
* Corresponding author: yuriy@mdpu.org.ua  

Methods and tools for teaching parallel and distributed 
computing in universities: a systematic review of the literature 

Yuriy Sitsylitsyn* 

Bogdan Khmelnitsky Melitopol State Pedagogical University, Department of Computer Science and Cybernetics, Melitopol, Ukraine 

Abstract. As computer hardware becomes more and more parallel, there is a need for software engineers 
who are experienced in developing parallel programs, not only by “parallelizing” sequential designs. Teach 
students a parallelism in elementary courses in computer science this is a very important step towards 
building the competencies of future software engineers. We have conducted research on “teaching parallel 
and distributed computing” and “parallel programming” publications in the Scopus database, published in 
English between 2008 and 2019. After quality assessment, 26 articles were included in the analysis. As a 
result, the main tool for teaching parallel and distributed computing is a lab course with a C++ 
programming language and MPI library. 

1 Introduction  
Traditionally, undergraduate computer science students 
are taught sequential programming through a one-way 
programming model in higher education majors. It is 
typical to wait for a student to develop knowledge of 
serial programming before teaching parallel 
programming. As computer hardware becomes more and 
more parallel, there is a need for software engineers who 
are experienced in developing parallel programs, not 
only by “parallelizing” sequential designs. Teach 
students a parallelism in elementary courses in computer 
science this is a very important step towards building the 
competencies of future software engineers. 

In April 2005, AMD released the AMD64 
architecture Opteron 2-core processor for servers. In 
May 2005, Intel released the Pentium D processor x86-
64 architecture, which was the first 2-core processor 
designed for personal computers. This was Intel’s quick 
response to AMD’s challenge. So the era of multi-core 
processors began. The growth of multi-core and multi-
core processing has certainly added new relevance to the 
teaching of parallel programming. Since 2000, in the 
world scientific literature many articles on the topic of 
parallel and sequential programming and learning 
parallel and sequential computing.  

According to Brown et al. [5], given the importance 
of these architectures, parallel programming becomes 
indispensable for undergraduate students in such 
specialties as computer science, computer engineering, 
and software engineering. Students in these specialties 
must be able to program in a satisfactory manner, both 
sequentially and in parallel. Acquaintance of students 
with parallelism should begin from the early periods 
[14], then students will consider it as a natural and 
general part of programming (and not as advanced and 
rarely used content) [4]. In addition, switching from 

serial to parallel programming is a difficult task [14]. 
There is a general opinion that the topics of parallelism 
should be distributed throughout the undergraduate 
program [3]. However, in most universities the concepts 
of parallelism are studied only in the last courses [18]. 

A tool that can be used to facilitate access from 
students to content is the use of distance learning, 
allowing the student to study the course content 
according to his daily routine, adapting the study to your 
time and allowing the teacher to monitor [24]. To 
conduct new research in the field of teaching parallel 
programming in undergraduate programs, it is important 
to take into account existing work and related 
experience, to consider the difficulties and problems that 
teachers face. A systematic review of the literature is a 
method that allows you to determine all relevant 
searches for a given research question. Given the above, 
it is necessary to organize a systematic review of the 
literature with the aim of analyzing scientific works 
related to teaching parallel programming in 
undergraduate programs in computer science. To do this, 
a study was conducted in articles indexed in the Scopus, 
Web of Science and Google Scholar. 

1.1 Theoretical bases 
The purpose of study is to examine the available 
literature on the development of “parallel thinking” 
among students in the specialty of computer science for 
the development of parallel programs. 

All articles in the review mention such terms as 
parallel and distributed programming. Let us dwell 
briefly on these concepts. 

Parallel programming is a method that aims to reduce 
the dependency between sections of the same code, 
which allows these sections to be executed out of order 
when executing processes and / or threads. However, this 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4017 (2020) shs 207504017
ICHTML 2020

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 

mailto:yuriy@mdpu.org.ua


 

execution is not necessarily parallel, since the actual 
parallelism of execution depends on the parallel 
architecture of the computer, processors with support for 
multithreading or speculation at the thread level, and / or 
using parallelism libraries (i.e. parallel programming). 

Parallel programming explores the potential 
parallelism that exists in code using parallelism libraries 
that allow explicit execution of processes and / or 
threads to simultaneously execute program code. In this 
case, it is important that a parallel architecture exists (for 
example, a multi-core processor), so that parallel 
execution is actually supported. Sometimes the terms 
“parallel computing” and “parallel programming” are 
used as synonyms, but it is important to note that parallel 
computing does not imply simultaneity, but the potential 
for simultaneity. Thus, parallel programming involves 
identifying and reducing dependencies between sections 
of the same code, and parallel computing involves using 
parallelism libraries to examine these sections in parallel 
architectures. 

Distributed programming is a method used to 
increase the scalability of parallel code execution using a 
communications network. In this context, for parallel 
codes, it is necessary to use message passing for 
collective communication, that is, the use of primitives, 
such as sending and receiving. Distributed programming 
is not necessarily used for concurrency, because 
processing can be distributed and sequential, but in the 
context of this article, the distributed potential of a 
cluster computer system offers the conditions for 
studying concurrency on a larger scale. For this reason, 
the concept of parallel and distributed programming is 
also used for systems in which several nodes with 
parallel architectures (for example, several cores) are 
connected by a high-performance communication 
network. In a cluster architecture of this type, parallel 
programming is performed by shared (operational) 
memory (intra-node communication) and transmission of 
network messages (external communication). 

This research is trying to understand the methods and 
tools of teaching parallel programming in higher 
education institutions. To study existing literature, the 
following questions were used: 
1. What methods and tools are used in teaching parallel 
and distribution programming? 
2. What do the authors define as problems in teaching 
parallel and distribution programming? 

1.2 Materials and methods 
This systematic literature review utilized the PRISMA 
guidelines and flow chart. PRISMA guidelines include a 
27-item checklist and a four-phase flow diagram 
outlining the items essential for transparency in 
conducting literature reviews [16]. 

In order to be included in this review, it is necessary 
to carry out research, to be peer-reviewed and to be 
published in English in a scientific journal article 
between 2000 and 2019. Research also needs to solve at 
least one of the research questions. 

The following bases were used for the search: Scopus 
(https://www.scopus.com), Web of Science 
(https://apps.webofknowledge.com/) and Google Scholar 

(https://scholar.google.com). The last search was 
performed on January 29, 2020. 

The search phrases used were: “teaching parallel and 
distributed programming”, “teaching parallel and 
distributed computing”. 

The following criteria were used sequentially against 
article abstracts to select studies for inclusion: 

Criteria 1: Study published between 2000 and 2020 
in English 

Criteria 2: Study published in scholarly journal 
Criteria 3: Research was conducted for 

undergraduate computer science students 
Criteria 4: Extracted data aligns with current study 

focus and research questions. 
The results of the database search we entered in the 

table. 

Table 1. The results of the database search. 

Search terms Database Hits 

“teaching parallel and 
distributed programming” 

Scopus 41 
Web of Science 82 
Google Scholar 5 

“teaching parallel and 
distributed computing” 

Scopus 52 
Web of Science 78 
Google Scholar 51 

 
Next, we remove articles from the results that do not 

mention teaching parallel programming. We bring all 
found articles into a single list. Then we delete articles 
that do not describe studies at the undergraduate or 
graduate level. Next, in a single list, we delete duplicate 
articles obtained from different databases. As a result, 
we get 26 articles. 

2 Methods and tools for teaching 
parallel and distributed computing  
After the screening, we received 26 research articles. 

If we look at the articles in terms of practical 
experience in teaching parallel and distributed 
computing, it can be said that 85% of articles are written 
on the basis of their own experience and 15% of review 
articles in which the authors provide the results of 
theoretical studies on the teaching of parallel and 
distributed computing. 

When considering methods of teaching parallel and 
distributed computing, the authors of the article pay 
attention to the following methods: a course of 
laboratory work that addresses selected topics or 
paradigms of parallel and distributed programming [1], 
[26]; course of lectures and laboratory work – here the 
authors give a complete theme of the course, which they 
teach: topics of lectures and laboratory work [3], [15]; 
some authors [2]; [8] introduce in the course of 
laboratory work with visualization of parallel computing, 
which according to the authors should promote the 
development of parallel thinking in students; some 
authors consider it appropriate to use the project method 
for laboratory work on real practical tasks [21] or team 
[31]. For a better understanding of the stages of 
concurrent programming, one of the authors [23] 
proposes to introduce a course on parallel programming 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4017 (2020) shs 207504017
ICHTML 2020

2

https://www.scopus.com),
https://apps.webofknowledge.com/)
https://scholar.google.com).


 

in the form of a game. According to the author, this will 
improve the formation of students in “parallel thinking”. 
We have summarized the methods of teaching parallel 
and distributed computing into a graph (Figure 1). 

 

 

Fig. 1. Methods of teaching parallel and distributed computing. 
 

The graph shows that most authors – 71%, use the 
method of laboratory work for practical training in 
parallel and distributed computing: one lab work reveals 
one topic or paradigm of parallel programming. Only 
19% of authors consider it advisable to use the project 
method of teaching parallel programming and only one 
article about the use of the game method in teaching 
parallel and distributed computing. 

Let us now consider the tools of parallel and 
distributed computing. First, consider the use of 
hardware. Based on the tools used by the authors of the 
articles, we divided them as follows: use of personal 
computer [6], cluster personal computers [17], personal 
computer with a set of video cards [26], single board 
computer [20], cluster of single board computers [10]. 
We reduce the use of learning hardware by parallel and 
distributed computation to the diagram (Figure 2). 

 

 

Fig. 2. Methods of teaching parallel and distributed computing. 
 
The analysis of the chart shows that 88% of authors-

teachers of higher education institutions use a personal 
computer to teach students parallel and distributed 
computing – that is, each student uses a personal 
computer (in computer class or own) to develop parallel 

and distributed programs. writing, debugging and 
running parallel and distributed programs. For 15% of 
authors, one or more discrete graphics cards must be 
present on a personal computer. Only 4% of authors use 
the latest technologies in the form of single-board 
computers for teaching parallel and distributed 
computing in their lab work. Laboratory work using 
clusters of single-board computers or personal computers 
is the same percentage. 

Now let’s consider the software for teaching students 
learning parallel and distributed computing. When 
designing lab work to teach parallel and distributed 
computing, the authors use most of the programming 
languages or additional libraries in most. Therefore, 
instead of a pie chart, we used a column in which the B 
axis contains the number of references in programming 
language articles (Figure 3). 

 

 
Fig. 3. Tools for teaching parallel and distributed computing. 

 
Analyzing the diagram we can conclude that for 

laboratory work in teaching parallel and distributed 
computing, most authors use the C++ language together 
with the MPI library. The Messaging Interface (MPI) is a 
standardized messaging library. The messaging 
paradigm was developed for shared memory 
architecture. It offers various messaging technologies 
that provide shared memory. In messaging, processes are 
connected through a set of point-to-point primitives and 
collective communications. MPI is the actual standard 
for developing high-performance science programs [19]. 
MPI offers APIs for developing scalable C++ 
applications that are portable, efficient and flexible. The 
disadvantages of learning parallel and distributed 
computing using the MPI library are the difficulty of 
mastering the basic paradigms of MPI by students who 
previously worked only with sequential programming. 

In second place by the number of mentions, the 
authors of the article are using the C++ programming 
language together with the OMP library. One of the most 
popular interfaces that supports multi-platform multi-
core shared memory is OpenMP [10]. Using the simple 
semantics of this interface, a programmer can enable 
concurrent multicore computing in their applications. 
The OpenMP library uses runtime library routines, 
compiler directives, and environment variables in C++. 
The authors note that it is easier for students to learn 
about using this library than MPI libraries, but program 
development using the OMP library is limited to use 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4017 (2020) shs 207504017
ICHTML 2020

3



 

only in concurrent programming whereas the MPI 
library can be used in concurrent, distributed, and hybrid 
programming. 

Recently, new features in hardware for parallel and 
distributed computing, such as the use of video cards 
with a library of parallel and distributed computing 
CUDA. The structure of the CUDA program reflects the 
coexistence of the host (CPU) and one or more devices 
(GPUs) in the computer. Each CUDA output file may 
contain a mixture of both host and device code. By 
default, any traditional C program is a CUDA program 
that contains only the host code. You can add device 
features and data declarations to any source file C. 
Device features or data declarations are clearly identified 
by CUDA special keywords. These are usually features 
that exhibit a great deal of data concurrency [2]. The 
CUDA library is a good tool for teaching students how 
to develop parallel programs based on data concurrency 
– complex mathematical calculations for matrices. The 
disadvantages include the availability of expensive 
equipment – graphics cards and the need to combine 
with other technologies to develop a program for 
distributed computing. 

Some teachers [27] use the Java programming 
language to simplify learning the basic principles and 
paradigms of parallel programming. As the author points 
out, Java’s programming language advantages over C or 
Fortran include higher-level programming concepts, 
improved compile-time and runtime checking, resulting 
in faster problem detection and debugging. In addition, 
Java’s automatic garbage collection during operation 
saves the programmer from many lower-level language 
pitfalls. Built-in thread support provides a way to insert 
concurrency into Java applications. The Java 
Development Kit (JDK) includes a large set of libraries 
that developers can use to quickly develop applications. 
Another interesting argument in favor of Java is its large 
pool of developers – the main reason is that Java is 
taught as one of the main languages in many universities 
around the world [27]. The disadvantages of learning 
parallel and distributed computing in the Java 
programming language can be attributed to the much 
slower speed of running parallel programs than when 
used to develop the C++ programming language. 

One author explores the use of Python programming 
language to teach students parallel programming [19]. 
The author points out that Python is gaining popularity 
in academia as the best language for teaching beginners 
to consistent programming. Python syntax is clean, easy 
and easy to understand. At the same time, it is a high-
level programming language that supports the paradigms 
of many programs, such as imperative, functional and 
object-oriented. Therefore, by default, it’s almost 
obvious to think that Python is also the right language 
for teaching parallel programming paradigms. In 
conclusion, A. Marowka’s study concludes: Python is 
still not mature enough to teach concurrent 
programming. It does not support adequate 
multithreaded programming, which is the main paradigm 
of parallel programming today. However, it has relevant 
modules that support the messaging paradigm and 
heterogeneous programming. Moreover, Python has 

drawbacks that make it an inappropriate language for 
training inexperienced programmers, such as the lack of 
visual debuggers and profiles [19]. 

It should be noted separately several experimental 
studies on the implementation in the parallel 
programming of integrated programming environments 
or programming languages developed by the authors of 
the studies themselves [12, 23, 28]. Y. Wepathana states 
that students should consider different concurrent 
architectures and programming models in their learning 
process. To achieve this, it is advisable to use an 
integrated system that has different concurrent 
architectures and supporting programming languages. 
The process of developing such environments or 
programming languages is still ongoing, and working 
with them, despite the student’s learning success, has 
many limitations, as the authors of the research note. 

Consider the authors’ vision of the process of 
organizing learning by parallel and distributed 
computing. For this purpose, we will put the following 
questions in the articles: the number of subjects of the 
curriculum on which parallel and distributed calculations 
are taught or required to be taught; what course you need 
to study concurrent programming; what are the 
directions of parallel programming. Let us summarize 
these questions into a table. 

Table 2. Font styles for a reference to a journal article. 

 Author, year 
of publication 

Number 
of items 

What course 
to study 

Computer 
science only 

1 Adams, 2013 one not specified Yes 
2 Anderson, 2010 one magistracy Yes 
3 Arroyo, 2013 few at all Yes 
4 Breuer, 2012 one first Yes 
5 Cesar, 2015 one magistracy No 
6 Delistavrou, 2011 one not specified No 
7 Eijkhout, 2018 one not specified Yes 
8 Franczak,  one not specified Yes 
9 Gardner, 2017 one not specified Yes 
10 Gregg, 2012 one school    
11 Grossman,2017 one second Yes 
12 Kuhail, 2018 one not specified Yes 
13 Lin, 2013 few at all Yes 
14 Marowka, 2008 one third Yes 
15 Marowka, 2017 one not specified Yes 
16 Matthews, 2018 one not specified Yes 
17 Mosin, 2018 one not specified Yes 
18 Muresano, 2010 one not specified Yes 
19 Ontañón, 2017 one not specified Yes 
20 Paprzycki, 2006 one first Yes 
21 Prasad, 2018 one not specified Yes 
22 Shafi, 2014 one not specified Yes 
23 Wepathana, 2015 one not specified Yes 
24 Wilkinson, 2013 one not specified Yes 

25 Wilkinson, 2016 few first and 
second Yes 

26 Younis, 2019 one third Yes 
 

Concerning the question, it is necessary to consider 
parallel and distributed calculations of more authors (26 
out of 29), which should be enclosed in one subject. It is 
only the authors that need to develop “parallel thinking” 
in all streams of all undergraduate courses [3]. 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4017 (2020) shs 207504017
ICHTML 2020

4



 

More real authors do not change in explicit age for 
any course, it is necessary to hang up the objects that 
exist with parallel and different exchanges. There are no 
others who share the same opinion: from the beginning 
of the course to graduate school. One of the authors 
provided an example of an experiment in basic parallel 
high school programming [11]. 

In the third question, we try to execute more authors 
(26 out of 29) by conducting experiments in their own 
fields of work. 

3 Conclusions 
At present, the main method of teaching parallel and 
distributed computing is a laboratory course, where each 
work studies a separate topic or paradigm of parallel 
programming, but to improve teaching, teachers try to 
implement a design method in the laboratory. 

The main tool for teaching parallel and distributed 
computing is a lab course with a C programming 
language and MPI library. But many teachers find that 
the use of such tools leads to the loss of interest in 
parallel programming by students, so many authors 
publish the results of experiments to improve learning by 
means of developing their own environments or the 
organization of cluster computing systems. 

References 
1. J. Adams, R. Brown, E. Shoop, Patterns and 

Exemplars: Compelling Strategies for Teaching 
Parallel and Distributed Computing to CS 
Undergraduates, in 2013 IEEE International 
Symposium on Parallel & Distributed Processing, 
Workshops and Phd Forum (2013). 
doi:10.1109/IPDPSW.2013.275 

2. N. Anderson, J. Mache, W. Watson, Learning 
CUDA: Lab Exercises and Experiences, in OOPSLA 
‘11 (2010), pp. 201–202. 
doi:10.1145/2048147.2048206 

3. M. Arroyo, Teaching Parallel and Distributed 
Computing to Undergraduate Computer Science 
Students, in 2013 IEEE International Symposium on 
Parallel & Distributed Processing, Workshops and 
Phd Forum (2013). doi:10.1109/IPDPSW.2013.276 

4. S. A. Bogaerts, One step at a time: Parallelism in an 
introductory programming course. Journal of 
Parallel and Distributed Computing 105, 4–17 
(2017). doi:10.1016/j.jpdc.2016.12.024  

5. R. Brown, Strategies for preparing computer science 
students for the multicore world, in ITiCSE-WGR 
‘10. June 2010, pp. 97–115. 
doi:10.1145/1971681.1971689 

6. A. Breuer, M. Bader, Teaching Parallel 
Programming Models on a Shallow-Water Code, in 
2012 11th International Symposium on Parallel and 
Distributed Computing. doi:10.1109/ISPDC.2012.48 

7. E. Cesar, A. Cortés, A. Espinosa, T. Margalef, 
J. C. Moure, A. Sikora, R. Suppi, Teaching Parallel 
Programming in Interdisciplinary Studies, in Euro-
Par 2015: Parallel Processing Workshops. LNCS 

9523 (2015), pp. 66–77. doi:10.1007/978-3-319-
27308-26 

8. C. T. Delistavrou, K. G. Margaritis, Towards an 
Integrated Teaching Environment for Parallel 
Programming, in 2011 15th Panhellenic Conference 
on Informatics. doi: 10.1109/PCI.2011.16 

9. V. Eijkhout, Teaching distributed memory 
programming from mental models, in 2011 15th 
Panhellenic Conference on Informatics, p. 107. 
doi:10.1109/PCI.2011.16 

10. T. Franczak, A. Nkansah, T. Marrinan, M. E. Papka, 
A Path from Serial Execution to Hybrid 
Parallelization for Learning HPC, in Proceedings of 
the 2017 Workshop on Education for High-
Performance Computing. 
doi:10.1145/1734263.1734339 

11. W. B. Gardner, Should We Be Teaching Parallel 
Programming?, in WCCCE ‘17. 
doi:10.1145/3085585.3085588 

12. C. Gregg, L. Tychonievich, J. Cohoon, 
K. Hazelwood, J. EcoSim: A language and 
experience teaching parallel programming in 
elementary school, in SIGCSE ’12, February 2012, 
pp. 51–56. doi:10.1145/2157136.2157155 

13. M. Grossman, M. Aziz, H. Chi, A. Tibrewal, 
S. Imam, V. Sarkar, Pedagogy and tools for teaching 
parallel computing at the sophomore undergraduate 
level. J. Parallel Distrib. Comput. 105, 18–30 
(2017). doi:10.1016/j.jpdc.2016.12.026  

14. Y. Ko, B. Burgstaller, B. Scholz, Parallel from the 
beginning: The case for multicore programming in 
the computer science undergraduate curriculum, in 
SIGCSE ‘13, pp. 415-420. 
doi:10.1145/2445196.2445320 

15. M. A. Kuhail, S. Cook, J. W. Neustrom, P. Rao, 
Teaching Parallel Programming with Active 
Learning. IPDPSW. (2018). 
doi:10.1109/IPDPSW.2018.00069 

16. A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, 
The PRISMA statement for reporting systematic 
reviews and metanalyses of studies that evaluate 
health care interventions: explanation and 
elaboration. Journal of Clinical Epidemiology 62, 1–
34 (2009). doi:10.1016/j.jclinepi.2009.06.006 

17. H. Lin, Teaching Parallel and Distributed 
Computing Using a Cluster Computing Portal, in 
2013 IEEE International Symposium on Parallel & 
Distributed Processing, Workshops and Phd Forum. 
doi:10.1109/IPDPSW.2013.35 

18. A. Marowka, Think Parallel: Teaching Parallel 
Programming Today. IEEE Distributed Systems 
Online 9(8) (2008). doi:10.1109/MDSO.2008.24 

19. A. Marowka, On parallel software engineering 
education using Python. Education and Information 
Technologies. (2018). doi:10.1007/s10639-017-
9607-0 

20. S. J. Matthews, J. C. Adams, R. A. Brown, 
E. Shoop, Portable Parallel Computing with the 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4017 (2020) shs 207504017
ICHTML 2020

5



 

Raspberry Pi, in SIGCSE ’18, February 2018, pp. 
92–97. doi:10.1145/3159450.3159558 

21. S. Mosin, N. Pleshchinskii, I. Pleshchinskii, 
D. Tumakov, Technique for Teaching Parallel 
Programming via Solving a Computational 
Electrodynamics Problems. RuSCDays 2018: 
Supercomputing (2018). 
doi:10.1016/j.jpdc.2018.02.023  

22. R. Muresano, D. Rexachs, E. Luque, Learning 
parallel programming: a challenge for university 
students. Procedia Computer Science 1, 875–883 
(2010). doi:10.1016/j.procs.2010.04.096 

23. S. Ontañón, B. Char, J. Zhu, E. Freed, Designing 
Visual Metaphors for an Educational Game for 
Parallel Programming, in CHI EA ‘17. 
doi:10.1145/3027063.3053253 

24. K. Osadcha, O. Sysoieva, Condition, technologies 
and prospects of distance learning in the higher 
education of Ukraine. Information technologies and 
learning tools 70, 271–284 (2019) 

25. M. Paprzycki, Education: Integrating Parallel and 
Distributed Computing in Computer Science 
Curricula. IEEE distributed systems online 7, 6 
(2006). doi:10.1109/MDSO.2006.9 

26. S. K. Prasad, A. Gupta, A. L. Rosenberg, 
A. Sussman, C. Weems, Topics in Parallel and 
Distributed Computing: Introducing Algorithms, 
Programming, and Performance within 
Undergraduate Curricula (2018). doi:10.1007/978-3-
319-93109-8 

27. A. Shafi, B. Carpenter, Teaching Parallel 
Programming Using Java, in EduHPC ’14, 
November 2014, pp. 56–63. 
doi:10.1109/EduHPC.2014.7 

28. Y.M.R.D. Wepathana, G. Anthonys, L.S.K. 
Udugama, Compiler for a simplified programming 
language aiming on Multi Core Students’ 
Experimental Processor, in ICIIS (2015). 
doi:10.1109/ICIINFS.2015.7399025 

29. B. Wilkinson, J. Villalobos, C. Ferner, Pattern 
Programming Approach for Teaching Parallel and 
Distributed Computing, in SIGCSE ’13, March 
2013, pp. 409–414. doi:10.1145/2445196.2445319 

30. B. Wilkinson, C. Ferner, The Suzaku Pattern 
Programming Framework, in IPDPS Workshops 
2016, pp. 978–986  

31. A. A. Younis, R. Sunderraman, M. Metzler, 
A. G. Bourgeois, Case Study: Using Project Based 
Learning to Develop Parallel Programing and Soft 
Skills, in IPDPSW (2019). 
doi:10.1109/IPDPSW.2019.00059 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4017 (2020) shs 207504017
ICHTML 2020

6




