
Choosing a library for the Python programming
language for visualizing the operation of parallel
algorithms

Sergii Sharov1*, Yurii Sitsylitsyn2, Oleksii Naumuk2, Dmytro Lubko1, and Vira Kolmakova3

1Dmytro Motornyi Tavria State Agrotechnological University, 66 Zhukovsky Str., Zaporizhzhia,
69600, Ukraine

2Bogdan Khmelnitsky Melitopol State Pedagogical University, 59 Naukovoho mistechka Str.,
Zaporizhzhia, 69000, Ukraine

3Pavlo Tychyna Uman State Pedagogical University, 2 Sadova Str., Uman, 20300, Ukraine

Abstract. The research compares the capabilities of several libraries for
the Python language, which allow creating a test application and visually
demonstrate the operation of a parallel program in real time. It was found
that the Python language is often used to develop parallel programs with
internal and external libraries. To provide multithreading and parallelism,
applications created in Python use external libraries, including
mpi4py.futures, PETSc for Python, MPI for Python, d2o, Playdoh,

PyOMP, and others. Visualization and animation of the operation of
parallel programs will help to understand the principles of parallel
computing. We compared test applications created with the use of
Matplotlib, Seaborn, Plotly, Bokeh, Pygame, PyOpenGL libraries.
According to the results of the observation, it was found that the Seaborn
library is the best choice for developing a test application for animating the
operation of a parallel program. Keywords: Python, parallel computing,
programming, libraries.

1 Introduction

In the conditions of rapid technogenic development and growing requirements for data

processing in real time, the speed of processing large volumes of information becomes a

critically important factor in the operation of parallel programs. The most common

programming languages used to develop parallel programs are Fortran, C, C++, Java and

Python. Each of them has unique capabilities and syntactic features, as well as approaches

and tools for implementing parallel algorithms. The multi-paradigm and powerful Python

programming language is a powerful tool for many tasks. It is used for website creation,

machine learning [1], [2], big data analysis [3], scripting, etc. A comparison of Python with

other programming languages was made in the work by [4]. The research by [5] compared

the performance of parallelism in Python and C++.

* Corresponding author: segsharov@gmail.com

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

mailto:segsharov@gmail.com

At the same time, novice programmers often face difficulties with understanding

parallel paradigms. Parallel programming, where the execution of multiple processes

simultaneously creates a new level of complexity and interaction between processors, is

quite different from sequential programming with its linear and one-dimensional processes.

This difference often causes misunderstandings and mistakes in approaches to program

development and analysis, especially in the context of multiprocessor and distributed

systems. As a result, a parallel computing course, along with the graphic design software

[6], is one of the important components of the training of future software engineers. It is

crucial to understand the key concepts of parallel computing, such as synchronisation,

resource management, and scaling, when preparing students for effective work in a modern

software environment. In this context, methodological approaches of teaching parallel
computing are reflected in the works by [7], [8].

For the development of parallel programs, the Python language has several libraries, the

capabilities, and performance of which are highlighted in research of various scientists. The

paper [9] analyzes the software components of MPI for Python and PETSc for Python. The

capabilities of mpi4py.futures, which works on the basis of the Message Passing Interface

(MPI), are shown in the work by [1]. The effectiveness of the Playdoh library is reported in

the work by [10]. A PyOMP module that supports OpenMP is described by [11]. In the

work by [12], individual libraries (JMetalPy, Parsl, Ray, PyWren, PyNetLogo) were

compared for the implementation of parallel and multiprocessor processing according to

various criteria.

To facilitate the study of the parallel programming principles, one can use educational

applications that demonstrate the process of the parallel program operation in a visual
(static or dynamic) form. They give future programmers an opportunity not only to read

about the operation mechanisms of parallel algorithms, but also directly observe their

execution in real time. In addition, a visual approach allows detecting and analyzing errors

in parallel programs, which is an important skill in modern programming.

In addition to the standard Tkinter library, the Python language has numerous libraries

and frameworks designed for 2D and 3D data visualization, multidimensional array

processing [9], interactive work with the Integrated Development Environment (IDE) in the

application development process. Given the importance of studying the capabilities of the

Python language for performing parallel computing based on visual representation of data,

the goal of the research is to select a library for the Python language that allows creating an

educational application and visually demonstrate the operation of a parallel program in real
time.

2 Theoretical Background

Today, the general-purpose programming language Python holds high positions in

international rankings, such as TIOBE (1st place) and Stack Overflow (3rd place in the

Technology section). Its popularity is based on several advantages. Firstly, the Python

language is characterized by a simple syntax that allows even beginners to learn how to

create applications quickly. Secondly, it supports several programming paradigms,

including functional, imperative, object-oriented. Support of the object-oriented

programming concept [13] allows structuring a program in the form of modules and

classes, simplifying its extension and maintenance. Third, Python is a cross-platform
programming language. This means that a developed application will run on different

operating systems, such as Windows or Linux, without a need to make significant changes

to the code or adapt it to a specific platform.

The work by [14] gives the following reasons for the popularity of the Python language,

these are: simplicity and ease of mastering the language syntax; versatility, which allows

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

2

using Python in different IDEs; a substantial amount of educational materials available in

the public domain; a wide community of Python programmers; one of the main areas of

Python usage is web development, data analytics, and machine learning, which are

currently considered as the most popular in the IT industry. As a result, Python is taught in

higher education institutions, in particular, within Computer Science specialties [7], as well

as independently with the help of various online resources, such as Massive Open Online

Course (MOOC) [15].

It is worth mentioning that performance of modern applications requires the

implementation of parallelism and multithreading. The parallelism paradigm involves

dividing a large task into several parts that will be executed simultaneously on different

processors [12]. In the Python language, parallelism is ensured by the use of the
multiprocessing module. However, it cannot provide high performance due to several

reasons. First, the Python language uses a program code interpreter, which does not allow

you to get the advantages of optimization when using a compiler. Second, using the Global

Interpreter Lock (GIL) prevents multiple threads from executing simultaneously, which

negatively affects performance [11]. Based on the parallel and sequential implementation of

several algorithms, F. J. M. Arboleda et al. [5] found that the multiprocessing module had

worse performance than the OpenMP directives used in the C++ programming language.

Therefore, to create Python applications that require parallel computing, one can use

external compiled modules, i.e. libraries [16]. Let us consider some of them.

Module mpi4py.futures is considered to be part of the mpi4py standard library, so it has

a shared memory limit. However, due to the use of MPI for communication between

processors, the module can be scaled to several processors. The Mpi4py.futures interface is
similar to the concurrent.futures package [1].

MPI for Python is a general-purpose package that allows parallel programs written in

Python to use multiple processes simultaneously. The package can be used in any

environment that supports MPI [9].

PETSc for Python is a portable toolkit based on the object-oriented programming

paradigm that uses modern data structures to solve large tasks [9].

d2o is an open-source Python module designed to process multidimensional numeric

arrays without sacrificing performance. The module interface is similar to the

numpy.ndarray interface. Since part of the module is written in Python, the advantages of

d2o are compactness, ease of use and modifiability [16].

Playdoh is a Python library designed to distribute computations between a small number
of multi-core computers. It is based on NumPy6, has a clear interface, and it can be ported

to most platforms [10].

PyOMP is a module based on using OpenMP in Python. It contains the most prominent

OpenMP Common Core elements (each thread executes the same code, loop-level

parallelism, divide and conquer with tasks) [11].

If you take a more thorough look at the mechanism of a parallel program, you will see

that it involves the creation and simultaneous execution of several parallel threads, each of

which moves towards a common endpoint where it completes its activities. These threads

operate at different speeds, which depend on the data they process and the specifics of the

algorithms used to process the data. While executing, threads can pause their work

depending on algorithmic conditions. Such suspension points are critical for understanding

the behaviour of parallel programs and can affect the overall efficiency and performance of
program execution. In addition, it is worth paying attention to flow control mechanisms,

such as blocking, conditional variables, and barriers. They regulate interactions between

threads, ensuring the correct order of operations and preventing problems such as race

conditions or mutual blocking.

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

3

An important aspect of parallel programs is load balancing between threads. Different

threads can perform different tasks or process different sections of data. Their effective

distribution is the key to optimizing performance. With improper load distribution, some

threads may remain underutilized while others are overloaded, resulting in a decrease in

overall system performance. This aspect is especially important in the case of working with

large data and in complex computational tasks. Another important aspect is error processing

in parallel programs. Parallel systems are often more prone to errors due to the complexity

of interactions between threads. Detecting and processing errors such as data loss, data

inaccuracy, or synchronization errors are critical to ensuring the reliability and stability of

parallel programs.

Understanding these aspects of the operation of parallel programs is key to creating
efficient and reliable parallel systems. Therefore, demonstrating these aspects in

training/test applications will not only help novice programmers to understand how they

arise, but also to learn how to solve them. In general, the development of an application for

visualizing the operation of parallel programs provides a unique opportunity not only to

study the theory of parallel programming, but also to visually observe the practical

application of the obtained information.

3 Research Methods

The purpose of the research was to choose a Python library that could be used to develop a

training application and visually demonstrate the operation of a parallel program in real

time. This application is not intended as a tool for developing full-fledged parallel
programs. Its main purpose is to serve as a learning tool that facilitates the understanding of

parallel programming concepts through visualization and animation of the operation of

parallel programs. To achieve this goal, we compared several open-source and free libraries

that have visualization and animation capabilities:

Matplotlib. It is one of the most popular data visualization libraries in Python. It allows

creating static, animated and interactive visualizations, which makes it useful for

demonstrating dynamic processes in parallel programs.

Seaborn. This library is based on the Matplotlib library, with additional features for

creating more complex and aesthetically appealing visualizations. It can be useful for

highlighting key aspects of data in parallel programs.

Plotly. This library supports the creation of high-quality interactive graphs. Plotly is
especially useful for creating interactive visualizations that allow users to better interact

with the presented data.

Bokeh. It is a library for creating interactive visualizations mainly in web browsers.

Bokeh works well for creating detailed interactive charts and graphs.

Pygame. Although Pygame is typically used for game development, this library can also

be useful for creating animations and graphical user interfaces. It allows developing

complex animation scenes that can display processes in parallel programs.

PyOpenGL. It is a Python-interface for OpenGL that can be used to create visualizations

using 3D graphics. This can be particularly useful for demonstrating complex parallel

processes in three-dimensional space.

The comparison of the capabilities of the libraries was carried out on the practical test,

which involved the parallel calculation of matrix multiplication by a number.
Mathematically, this can be described using formula (1):

bi,j = k · ai,j (1)

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

4

Where bi,j are the elements of the resulting matrix, ai,j are the elements of the original

matrix, and k is the multiplier

To perform the calculation, we developed small parallel programs using selected

libraries. Each of the programs uses four threads to multiply parts of the matrix by a

number. Since each thread will process its own part of the matrix, this allows visualizing

this process in real time. Animation of the parallel calculation process was implemented in

the test programs. When evaluating libraries for developing the parallel program animation

application, priority was given to those that have good integration with Tkinter (the

standard graphical user interface (GUI) library for Python) [17].

4 Results and Discussion

The operation of the test example of the parallel program developed with the Matplotlib

library is shown in Figure 1.

Fig. 1. The example of the program developed with the Matplotlib library

The use of the Matplotlib library with Tkinter to develop the test program for parallel

calculation of matrix multiplication by a number revealed several key aspects. Matplotlib

was easily integrated into Tkinter via the FigureCanvasTkAgg widget. This allowed

integrating Matplotlib graphs directly into the Tkinter graphical interface. Thanks to this
integration, it was possible to create a user interface with buttons, menus, and other control

elements that interact with the visualization. Conclusion: using Matplotlib with Tkinter

enables the development of an application that not only demonstrates the process of parallel

computing, but also provides the flexibility and interactivity necessary for effective

learning.

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

5

The operation of the test example of the parallel program developed with the Seaborn

library is shown in Figure 2.

Fig. 2. The example of the program developed with the Seaborn library

Using the Seaborn library with Tkinter for developing the test case revealed more

features than Matplotlib. Especially when it comes to creating more attractive and intuitive

visualizations. This is achieved through better management of styles and colour palettes in

the Tkinter graphical interface. Seaborn can be used to create more complex visualizations,

which can include heat maps or other types of graphs. Unlike Matplotlib, Seaborn is not
interactive. However, integrating with Tkinter allows the addition of interactive controls,

such as buttons and sliders, for managing visuals. Seaborn simplifies the process of creating

complex graphs, providing a higher level of abstraction, which allows us to develop our

application faster with richer functionality. Conclusion: Using Seaborn together with

Tkinter can give visualizations more aesthetic appeal and clarity. Thus, you can make

information more comprehensible for programmers who are just starting to get acquainted

with parallel computing.

The work of the test example of the parallel program developed with the Plotly library

is shown in Figure 3.

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

6

Fig. 3. The example of the program developed with the Plotly library

Using the Plotly library with Tkinter to develop a parallel application requires a special

approach. This can be explained by the fact that the Plotly library was primarily developed

for creating interactive visualizations in a web environment. One of the advantages of

Plotly is its interactivity, which allows users to interact with visualizations (e.g. zoom in,

view specific data, etc.). However, using Plotly in a desktop application requires more

resources, especially when integrated with web technologies. It is also necessary to

consider dependencies and compatibility with different versions of browsers or web

widgets. Conclusions: Using Plotly with Tkinter may require additional efforts to integrate

and optimize the performance of a program.

The Bokeh library was also developed for creating interactive visualizations in a web
environment, so it has similar disadvantages for developing a test application. Similar to

Plotly, Bokeh is not designed for direct integration with Tkinter. Embedding Bokeh

visualizations in the Tkinter interface may require the use of web widgets or embedded

browsers. It can significantly complicate development, since additional dependencies and

integration challenges need to be considered.

Using the Pygame library with Tkinter for developing an application also requires

additional efforts. It is due to the fact that Pygame is more focused on developing games

and multimedia applications. Integrating Pygame with Tkinter can be a bit tricky, as both

libraries have their own event loops and ways of managing windows. Special code may be

required to coordinate these libraries to work together. Pygame is well optimized for

creating graphical animations and can efficiently use system resources. However, it should
be noted that working with Pygame may require more attention to detail in graphic design

and animations. Conclusion: Using Pygame to develop an application can provide many

opportunities for creative and efficient display of parallel computing, but it requires careful

planning and understanding of the specifics of working with both libraries (Pygame and

Tkinter).

PyOpenGL turned out to be a less suitable choice for the development of our test

application, especially given the need to work with Tkinter and the implementation of

interaction with a user. PyOpenGL is an interface for OpenGL that provides advanced

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

7

capabilities for working with 3D graphics. Its integration with Tkinter is not trivial and may

require special widgets or additional settings to work properly. Conclusion: PyOpenGL

provides powerful capabilities for working with 3D graphics, but is not a suitable option for

developing our application.

Based on the analysis of various libraries, we came to the conclusion that Seaborn is the

best option for developing the application for the animation of the parallel program. It is

due to the following reasons:

 The Seaborn library allows creating attractive, informative graphics with advanced

settings for styles and colour schemes, making visualizations more perceivable for

users.

 Seaborn offers a high level of abstraction and simplifies the process of creating
complex visualizations. It makes it more accessible to developers who do not have

profound knowledge of data visualization.

 Seaborn supports a wide range of graph types and visualizations. It makes it possible

to efficiently display various aspects of data in parallel computing, including resource

allocation and execution efficiency.

 Despite the fact that Seaborn itself does not have any specific support for Tkinter, it

can be used together with Matplotlib to integrate with Tkinter, which provides

flexibility in creating a user interface.

In our opinion, the development of test applications with the ability to animate the

operation of the program will allow beginners in programming to better understand how

parallel processes interact with each other, how resources are managed, how typical
problems such as “race conditions” or “mutual blocking” are solved. They will be able to

visually evaluate the efficiency and potential problems in parallel programming structures,

make adjustments to the code, and instantly see the results of these changes in the form of

animations. In addition, during the creation of parallel applications, programmers will be

aware of the capabilities of various libraries, learn to use them, and also get practical

experience in programming [16], which is one of the main components of training a

professional programmer.

5 Conclusions

Thus, parallel computing is one of the promising areas of technological development. The

development of parallel applications can be implemented with the Python programming
language, which allows the use of internal and external libraries. To provide multithreading

and parallelism, applications created in Python use various libraries, including

mpi4py.futures, PETSc for Python, MPI for Python, d2o, Playdoh, PyOMP, and others.

To simplify the understanding of the principles of parallel computing during the

development of applications with the Python language, one can visualize their operation

using the appropriate libraries. Such educational applications will allow one to see the

process of resource management and the result of calculations in real time in the form of

animation or graphics. For this purpose, the capabilities of such libraries as Matplotlib,

Seaborn, Plotly, Bokeh, Pygame, PyOpenGL were analyzed. After analyzing the

possibilities of the considered libraries, we found out that Seaborn is the best choice for

developing the test application for animation of the work of a parallel program.
After choosing the Python library for developing parallel program animations, we plan

to develop a simplified formal language for writing parallel programs that will be closely

related to visualization. This approach to creating applications will allow programmers to

see a direct connection between the program code and its execution in the form of

animation.

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

8

References

1. M. Rogowski, S. Aseeri, D. Keyes, L. Dalcin, Mpi4py.futures: MPI-Based

Asynchronous Task Execution for Python, IEEE Transactions on Parallel and

Distributed Systems 34(2), 611-622 (2023) doi: 10.1109/TPDS.2022.3225481

2. N. Nagy et al., Phishing URLs Detection Using Sequential and Parallel ML

Techniques: Comparative Analysis, Sensors 23(7), 3467 (2023) doi:
10.3390/s23073467

3. S. Chakraborty, A. Cortesi, N. Chaki, A uniform representation of multi-variant data in

intensive-query databases, Innovations Syst. Softw. Eng. 12, 163-176 (2016) doi:

10.1007/s11334-016-0275-9

4. Md. G. Rashed, R. Ahsan, Python in Computational Science: Applications and

Possibilities, International Journal of Computer Applications 46(20), 26-30 (2018) doi:

10.5120/7058-9799

5. F. J. M. Arboleda, M. R. Arias, J. A. H. Riveros, Performance of Parallelism in Python

and C++, IAENG International Journal of Computer Science 50(2), 1-13 (2023)

6. H. Chemerys et al., Fundamentals of UX/UI design in professional preparation of the

future bachelor of computer science, AIP Conference Proceedings 2453(1), 030025
(2022) doi: 10.1063/5.0094433

7. N. Watkinson, A. Shivam, A. Nicolau, A. Veidenbaum, Teaching parallel computing

and dependence analysis with python, In Proceedings 2019 IEEE 33rd International

Parallel and Distributed Processing Symposium Workshops (IPDPSW 2019), 320-325

(2019) doi: 10.1109/IPDPSW.2019.00061

8. Y. O. Sitsylitsyn, V. V. Osadchyi, V. S. Kruglyk, O. H. Kuzminska, Modeling training

content for software engineers in parallel computing, Journal of Physics: Conference

Series 2611, 012017 (2023) doi: 10.1088/1742-6596/2611/1/012017

9. L. D. Dalcin, R. R. Paz, P. A. Kler, A. Cosimo, Parallel distributed computing using

Python, Advances in Water Resources, Advances in Water Resources 34(9), 1124-

1139 (2011) doi: 10.1016/j.advwatres.2011.04.013

10. C. Rossant, B. Fontaine, D. F. M. Goodman, Playdoh: a lightweight Python library for

distributed computing and optimisation, Journal of Computational Science 4(5), 352-

359 (2013) doi: 10.1016/j.jocs.2011.06.002

11. T. G. Mattson et al., PyOMP: Multithreaded Parallel Programming in Python,

Computing in Science and Engineering 23(6), 77-80 (2021) doi:

10.1109/MCSE.2021.3128806

12. A. Aziz et al., Python Parallel Processing and Multiprocessing: A Rivew, Academic

Journal of Nawroz University 10(3), 345-354 (2021) doi: 10.25007/ajnu.v10n3a1145

13. S. Choporov, S. Gomenyuk, O. Kudin, A. Lisnyak, Design patterns for object-oriented

scientific software, CEUR Workshop Proceedings 2105, 441–444 (2018)

14. A. Saabith, M. Fareez, T. Vinothraj, Python current trend applications-an overview,

International Journal of Advance Engineering and Research Development 6(10), 6–12
(2019)

15. S. Sharov et al., Using MOOC to Learn the Python Programming Language,

International Journal of Emerging Technologies in Learning 18(2), 17–32 (2023) doi:

10.3991/ijet.v18i02.36431

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

9

16. T. Steininger, M. Greiner, F. Beaujean, T. Enßlin, D2o: a distributed data object for

parallel high-performance computing in Python, Journal of Big Data 3(17), 1-34

(2016) doi: 10.1186/s40537-016-0052-5

17. S. Kurzadkar et al., Hotel Management System Using Python Tkinter GUI,

International Journal of Computer Science and Mobile Computing 11(1), 204–208

(2022) doi: 10.47760/ijcsmc.2022.v11i01.027

, 03002 (2024)E3S Web of Conferences https://doi.org/10.1051/e3sconf/202450803002 508
GreenEnergy 2023

10

	1 Introduction
	2 Theoretical Background
	3 Research Methods
	4 Results and Discussion
	5 Conclusions
	References

