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This paper has substantiated  
a modified method that, within the 
framework of the adaptive zeroor
der Brown’s model, provides for 
increased accuracy in predicting 
processes with unknown dynamics 
masked by the noise of various levels. 
The forecasting method modifica
tion essentially involves an adaptive 
technique for determining the weight 
of the correction of the previous fore
cast, taking into consideration the 
recurrent state of the predicted pro
cess in time. To investigate the accu
racy of the forecasting method, a test 
model of the process dynamics was 
determined in the form of a rectan
gular pulse with unit amplitude. In 
addition, a model of additive mask
ing noise was defined in the form 
of a discrete Gaussian process with  
a zero mean and a variable value of 
the mean square deviation. Based 
on determining the exponentially 
smoothed values of current absolute 
forecasting errors, the dynamics of 
forecast accuracy were examined for 
the modified and selfadjusting me 
thods. It was found that for the mean 
quadratic deviation of the masking 
noise equal to 0.9, the smoothed abso
lute prediction error for the modi
fied method does not exceed 23 %;  
for the selfadjusting method – 42 %. 
This means that the prediction ac 
curacy for the modified method is 
about twice as high. In the case of an 
average square deviation of mask
ing noise of 0.1, the smoothed abso
lute prediction error for the modi
fied and selfadjusting methods is 
approximately the same and does 
not exceed 10 %. That means that 
at a low level of masking noise, both 
prediction methods provide approxi
mately the same accuracy. However, 
with an increase in the level of mask
ing noise, the selfadjusting method 
significantly loses the accuracy of 
the forecast to the proposed modi
fied method
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1. Introduction

Forecasting the state of complex objects in various 
fields [1] operating in unstable environments (UE) is the 

basis for solving the common problem of improving the 
efficiency of management of such objects [2]. The most 
important, from the point of view of civil protection, are 
dangerous objects [3] operating in UE [4]. These include  
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hazardous events in ecosystems [5] and socio-economic sys-
tems [6, 7]. The most dangerous, in this case, are fires in the 
premises (FP) [8]. This is due to the mass nature of such fires 
and their significant damage, both to human life and to the 
objects themselves [9], as well as to the environment [10, 11]. 
Therefore, forecasting the dynamics of the state of UE should 
be considered as one of the constructive approaches to 
ensuring the stability of objects [12]. The use of predictive 
technologies has made it possible to move from reactive to 
proactive control of objects. Such management is based on 
short-term forecasts (STF) of unknown dynamics (UD). 
However, the application of predictive technologies for ob-
jects characterized by UE turned out to be quite problematic.  
This is explained by the non-stationary and UD of predic-
ted hazardous processes (HP), masked by noise (MN). To 
describe the HP, a mathematical apparatus based on the ap-
plication of systems of differential equations and the gene ral 
theory of the state space is used [13]. Existing models make 
it possible to describe the average dynamics of HP forecast-
ing, characteristic of a limited number of objects and UE.  
However, these tools turned out to be poorly adapted to 
solve the tasks of STF and operational management in UE. 
At the same time, decisions on the operational management 
of non-stationary complex objects are often reactive in na-
ture and are aimed at compensating for the already occurred 
emergency deviation of the dynamics of HP [14]. Such an 
approach inevitably reduces the effectiveness of emergency 
management and requires a transition to proactive manage-
ment, which provides a proactive response to a possible set 
of non-stationary conditions that arise in UE. In this regard, 
the technology of HP STF with non-stationary and UD, MN, 
should be considered as an urgent issue.

2. Literature review and problem statement

Work [15] investigates traditional models of the dyna-
mics of processes in UE in the form of deterministic differen-
tial equations. However, such models do not meet the re-
quirements of operational proactive management. This is 
explained by the fact that real HPs contain complex jump-
like and non-periodic components characteristic of dynamic 
chaos and non-stationary MN. As a result, conventional 
methods based on such models do not allow the formation of 
effective predictive solutions. The transition to more ade-
quate models that meet the requirements of proactive HP 
management requires the development and application of 
qualitatively new technologies or modified STF methods 
based on modern mathematical and information technolo-
gies. In [16], the STF of the state of non-stationary HP based 
on artificial intelligence or data mining technologies is con-
sidered [17]. However, these methods turn out to be quite 
complex and do not meet the requirements of HP STF 
with UD. The results of modern system analysis and HP STF 
under uncertainty using stochastic models are tackled in [18]. 
The review of the cited work reveals that in the tasks of CP 
UD of the state and management of objects, there is a tenden-
cy to use modern data analysis theory, artificial intelligence 
technologies, and cognitive computing. However, the use of 
these technologies for the implementation of HP STF with 
UD in order to implement proactive management of complex 
objects turns out to be problematic. This is explained by the 
non-stationary and unknown dynamics of real environ-
ments [19]. Therefore, the problem of CP UD HP in order to 

implement proactive management in unstable environments 
does not have a complete solution. It is known that adaptive 
methods and models provide the best results for CP HP with 
UD in noise. One of the widely used STF methods for this is 
the adaptive zero-order Brown’s method (ZOBM) [20]. The 
main advantage of ZOBM is the ability to adapt STF to new 
observational data. In this case, the ability to adapt STF for 
ZOBM is determined by the parameter h, which acts as a cor-
rective weight for current forecast errors. Paper [21] discusses 
the application of ZOBM to predict stationary processes.  
The study of the use of ZOBM for forecasting evolutionary 
processes is reported in [22]. The results obtained confirm 
the versatility of ZOBM for predicting various processes. In 
this case, the studies are limited mainly to a fixed value of the 
parameter h from the classical set between 0 and 1. However, 
there are currently many different ways to select this param-
eter. For example, in [23], the parameter h is offered to be 
selected subject to condition 0.1<h<0.3. However, there is no 
justification for this recommendation. In [24], it is stated that 
for the particular dynamics of HP, there is a specific parame-
ter value. The selection of such a value for the parameter h 
shall be based on the objectives of STF. For example, in [25], 
for STF of the dynamics of processes of an evolutionary nature, 
it is recommended to choose the parameter h subject to condi-
tion 0<h<1, and, for processes with chaotic dynamics, 1<h<2.  
It is noted that for each type of dynamics of the predicted HP 
there is the best value h to be determined. In [26], the para-
meter h is proposed to be selected experimentally for each 
specific predicted HP. However, this approach is not ope-
rational and is not suitable for forecasting HP. There is also 
a known approach [27], based on the choice of h = 2/(k+1),  
where k is the number of steps included in the interval of 
smoothing the dynamics of HP. In this case, k is determined 
empirically, and the dynamics of HP is limited only by a ran-
dom constant. The method of rapid identification of dange-
rous HP states based on the correlation approach is consid-
ered in [28]. However, the method is limited to a class of 
stationary processes. In addition, the issues of application of 
the method for the STF of HP taking into consideration UD 
are not considered. Paper [29] proposes an original modifica-
tion of ZOBM for the HP STF with complex and UD [29].  
In this case, the modification is based on the choice of the 
parameter h based on determining the Hearst indicator for 
the implementation of the predicted process. However, the 
main limitation of such a modification is the implementation 
complexity of the method, as well as the need for extended 
segments of stationarity. In addition, predicted processes 
must have special properties that are not usually present for 
real processes. In [30], it is proposed to modify ZOBM for HP 
STF based on the theory of functions of complex variables.  
A significant advantage of this modification is the lack of  
a priori information about the dynamics of HP. However, the 
method turns out to be difficult to implement and very sensi-
tive to errors in the selection of initial values for the smooth-
ing coefficient. These disadvantages, despite the existing ad-
vantages, limit the use of this method for HP STF with UD, 
MN of various levels. In our opinion, STF methods based on 
the results of the theory of nonlinear dynamics of complex 
systems are more constructive. A review of modern methods 
of quantitative analysis of the nonlinear dynamics of systems 
is presented in [31]. In [32], a method for rapid detection of 
atmospheric pollution based on the calculation of recurrent 
plots and measures of recurrent states (RS) of atmospheric 
pollution is proposed. The main limitation of the method is  
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the dependence of recurrence plots on the specified threshold 
distance, which determines the permissible degree of proxi-
mity of the analyzed states. The method of calculating recur-
rence plots with a self-adjusting threshold is considered 
in [33]. However, in [31–33], the methods of HP STF with 
UD against the background of the noise of various levels are 
not considered. Methods of HP STF with UD, MN, are con-
sidered in [34]. However, these methods are limited to the 
class of stationary models of HP dynamics. The method of 
estimating the non-stationary dynamics of HP is proposed 
in [35]. However, a given method is based on the interval 
Fourier transform to stationary fragments of the non-statio-
nary dynamics of HP. At the same time, it is not possible to 
isolate stationary fragments in the case of UD. Methods of 
frequency-time identification of nonlinear systems are con-
sidered in works [36, 37]. However, the methods considered 
are complex and do not allow them to be used for HP STF 
with UD, MN. Paper [38] proposes an original method of 
frequency-time representation for identifying the dynamics 
of hazardous states of the gas environment during fires. How-
ever, this method turns out to be quite complex, which limits 
its application to HP STF. Therefore, study [39] proposes 
a modification of ZOBM for the STF of the current measure 
of recurrent increments of the HP state. Unlike [38], a given 
method has sufficient efficiency of the HP STF with UD, MN.  
However, the quality of STF significantly depends on the 
consistency of ZOBM smoothing parameter with the current 
dynamics of HP [40]. Similar limitations are characteristic of 
another method of HP STF based on ZOBM, proposed 
in [41]. Paper [42] considers a method for the rapid identifi-
cation of hazardous air pollution conditions. The method is 
based on an analysis of the current RS measure for UD pol-
lution. Methods of HP STF with UD, MN of various levels 
are not considered. This is due to the different purposes of the 
methods. To identify dangerous air pollution, in [43], it is 
proposed to use the uncertainty function for pollution.  
However, the STF method with UD is not considered in 
works [42, 43]. In [44], the accuracy of HP STF based on 
ZOBM is investigated. However, the study of the accuracy of 
HP STF is limited to fixed values of the smoothing parameter. 
Modification of ZOBM for the HP STF of UD processes is 
not considered. Study [44] offers an interesting version of the 
modification of ZOBM, which is self-adjusting based on ob-
servations, for the STF of the dynamics of irreversible HP and 
phenomena. However, the quality control of this method is 
limited to experimental data on the state of the gaseous me-
dium in the laboratory chamber. Due to the uncertainty of the 
true dynamics of the state of the gaseous medium in the cham-
ber, the assessment of the accuracy of STF given in [44] can-
not be recognized as objective for assessing the quality of the 
method. For an objective assessment of the accuracy of STF 
methods, it is necessary to use test models of the dynamics of 
HP with the predefined level of observation noise. Thus, the 
unsolved part of the general problem under consideration is  
a modification of the method of forecasting HP with UD in 
the presence of noise, which provides an increase in the accu-
racy of STF under these conditions.

3. The aim and objectives of the study

The aim of this work is to modify the method of forecast-
ing hazardous processes with unknown and non-stationary 
dynamics, masked by the noise of various levels, providing 

increased forecast accuracy within the framework of the 
adaptive zero-order Brown’s model.

To accomplish the aim, the following tasks have been set:
– to substantiate within the framework of the adaptive 

zero-order Brown’s model a modified method for predict-
ing dangerous processes with unknown and non-stationary 
dynamics, masked by the noise of various levels, providing 
increased accuracy of the forecast;

– to determine a test model of the dynamics of the 
predicted process, as well as an additive noise model with  
a variable level to study the accuracy of the forecast;

– to investigate the accuracy of the forecast for the 
modified method on the example of the test dynamics of the 
process, masked by the noise of different levels.

4. The study materials and methods

The object of this study is ZOBM for HP STF with 
random dynamics, MN. The subject of this study is the 
modification of the adaptive ZOBM for forecasting HP with 
non-stationary and UD, MN of various levels, increased ac-
curacy of STF. Usually, the accuracy of various methods of 
STF is assessed on the test dynamics of HP STF at different 
noise levels [20, 45]. As the universal and characteristic dy-
namics, the test dynamics in the form of a rectangular pulse 
with variable time parameters of its occurrence were chosen. 
As a test model of noise, the Gaussian process with zero mean 
and variable standard deviation (SD) was considered. To do 
this, we used the built-in special function in the Mathcad 14 
programming environment (USA). The study was limited to 
investigating the additive effects of noise on the test dyna-
mics of the predicted HP. The accuracy of the STF of the test 
dynamics of HP, MN with various SD, was determined by ex-
ponentially smoothed values of the current absolute errors of 
the STF. Exponential error smoothing was carried out in the 
current time with a window width determined by 80 counts. 
For the purpose of comparison, the smoothed values of the 
current absolute errors of STF were determined for the pro-
posed modified method and the self-adjusting ZOBM [44].

5. Modifying the method of forecasting processes with 
unknown dynamics masked by noise 

5. 1. Substantiation of the modified method for predict-
ing processes with unknown dynamics masked by noise

The self-adjusting ZOBM, described in detail in [44], 
makes it possible to predict HP with UD, MN. However, 
a given method has the disadvantage associated with a de-
crease in the accuracy of UD STF with an increase in the 
level of MN. This is explained by the fact that the method 
reported in [44] does not separate errors caused by the dis-
crepancy between the predicted and real dynamics of the 
HP and the MN. Therefore, the method from [44] provides 
high accuracy of UD STF only at a very low level of MN. 
Under these conditions, the correction of the previous STF 
is carried out with a weight depending on the current error 
of STF without taking into consideration the error caused 
by MN. In this case, the current value of the corrective 
weight is the inverse of the current variance of the STF error. 
And the larger this error, the lower the weight value of the 
adjustment of the previous forecast. In [29], for the STF of 
processes with UD, MN, it is proposed to choose the value 
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of the corrective weight for the previous forecast, using the 
calculation of the value of the Hearst indicator. This indi-
cator, although it makes it possible to assess the nature of 
the UD of the predicted process, is valid only under certain 
conditions, which are not always fulfilled under the STF of 
UD of real processes. At the same time, the specified method 
for determining the corrective weight does not take into 
consideration the specific type of process UD. This limits 
the possibility of improving the accuracy of STF UD, MN. 
Therefore, a modification of the methods [29, 44] is pro-
posed, which is based on a new method for determining the 
corrective weight depending on the assessment of the current 
specific UD of the predicted process against the background 
of MN, determined on the basis of the averaged current HP 
RS with UD, MN, only from discrete data preceding the 
current discrete moment. Let the discrete observations (the 
UD of the predicted process given the MN) at an arbitrary 
discrete point in time i be defined as Ai. Then the current RM 
of the observed data KBi at a discrete point in time i will be 
defined by the expression:

KB
i j A A

i mi

i j

j m
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≤ − −( )( )

+ −=
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where Ф(*) is the Heaviside function; i is the current discrete 
moment of observation; m is an arbitrary discrete moment of 
the beginning of the calculation of the current data RS; ε is the  
value that determines the degree of proximity of the data Ai 
and Aj. To improve the accuracy of STF UD HP, MN, it is 
proposed to average the RS (1) in a moving rectangular win-
dow of a fixed size W. Then the averaged RS in the moving 
window (1) KBWi will be determined from the expression:
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In accordance with the technique under consideration, 
it is proposed to use the average estimate (2) as the current 
weight value to correct the previous forecast. Taking into 
consideration (1) and (2), the proposed modified STF me- 
thod for the process with UD, MN, can be represented as the 
following ratio:

  

T T KBW A Ti i i i i= + −( )− − −1 1 1 ,  (3)

where 


Ti ,  


Ti−1  is a modified forecast at a discrete time point i 
and i–1, respectively, A Ti i−( )−



1  is a forecast error at a discrete 
moment i. Ratio (3) differs from the known ones in that the 
correction of the previous forecast of the process with UD, 
MS of an unknown level, is carried out with a weight that 
takes into consideration the UD of the process by calculating 
the current RS averaged in a moving rectangular window. At 
the same time, the current weight in ratio (3) is determined 
at the real rate of acquiring discrete data, which ensures the 
implementation of STF. Taking into consideration a specific 
UD in determining the weight of correction of the previous 
forecast makes it possible to ensure higher accuracy of STF 
compared to known methods [29, 44].

Thus, the essence of the proposed modification of ZOBM 
for HP STF with UD, MN of unknown level, is a new technique 
to determine the current weight of correction of the previous 
forecast, based on the calculation of the estimate of the aver-
age current RS of data observed (2), performed in real time.

The implementation of the proposed modified method 
of HP STF with UD, MN of unknown level, involves the 
implementation of three consecutive procedures. The first 
procedure calculates the current RS values for incoming data 
Ai according to expression (1). In addition to the incoming 
data, the procedure involves setting the value of ε, which de-
termines the degree of proximity at which the data Ai and Aj 
are considered the same at the corresponding points in time. 
The parameter m in the procedure defines an arbitrary dis-
crete moment to start calculating the current RS of the data. 
In a particular case, the value of this parameter can be taken 
to be zero. A given procedure is new for known methods of 
HP STF with UD, MN of unknown level. The novelty of the 
procedure is due to the calculation of current RS values for 
unknown incoming data Ai.

The second procedure involves calculating the results of 
determining in the first procedure of the current RS values 
for incoming data Ai of the averaged RS in a moving rect-
angular window of a fixed size W. The implementation of 
the second procedure involves setting the size of W for the 
averaging window. The second procedure is also new to the 
known methods of HP STF with UD, MN of unknown level. 
The third procedure involves the formation of a modified 
HP of the process with UD, MN of unknown level, based 
on the calculated values of the averaged RS in a moving  
rectangular window of fixed size W in the second procedure.  
Its novelty is in the use as a weight correction of the pre-
vious forecast of the value of the current averaged RS in  
a moving rectangular window of a fixed size. The sequence  
of all steps for this procedure is fully determined in accor-
dance with ratio (3).

Thus, the described procedures implementing the pro-
posed modified method of STF processes with UD, MN of 
unknown level, in addition to the observed data Ai, require 
setting the value of W for the averaging window and the 
value of ε, which determines the degree of proximity of the 
data Ai and Aj considered at the corresponding points in time, 
as well as the size W of the averaging window of the current 
RS of the data. However, setting specific values for these 
values in the corresponding procedures is not problematic. It 
should be noted, however, that the value of ε will affect the 
nature of the representation of the RS plot for specific data, 
and the size of the averaging window W will affect the degree 
of smoothing of the current RS of data. General recommen-
dations for the selection of these values can be formulated in 
the following form: the value of ε should be selected within 
20–50 percent of the estimated maximum value of UD, and 
the size W for the averaging window should not exceed 
5 discrete data counts. To verify the adequacy of these re-
commendations, a numerical experiment was conducted 
using the test data model described below.

5. 2. Test model of the unknown dynamics of a predic-
ted process and a model of additive masking noise

The test model of the dynamics A0i was selected as  
a rectangular pulse of unit amplitude and was determined  
in the form:

A i n i ki0 = −( ) − −( )Φ Φ ,  (4)

where n is the moment of onset of the pulse; k is the moment 
of the end of the pulse.

As a test model of MN at discrete moments in time,  
a stationary Gaussian process with a zero average value and 
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a variable value of SD was selected. A discrete sample Ni  
of MN of the predefined size was generated using a built-in 
program in the Mathcad 14 programming environment. The 
test model (4) of the dynamics is typical in assessing the ac-
curacy of STF and contains the most characteristic for fore-
casting non-stationary states in the systems of the technical, 
natural, and social areas.

Taking into consideration these models, the test observed 
data at discrete times Ai were determined as:

A A Ni i i= +0 .  (5)

The model of discrete data (5) was subsequently used 
to assess the accuracy of the proposed modified method and 
the method reported in [44] for HP STF with UD, MN of 
various levels.

5. 3. Investigation of the accuracy of the modified 
method for predicting processes with unknown dynamics 
masked by noise

The accuracy of STF for the modified method and the 
method reported in [44] for the test data model (5) was in-
vestigated. The choice of these methods is explained by the 
fact that they both make it possible to predict HP with UD, 
MN of various levels, in real-time observation. The modeling 
conditions under which the comparative evaluation of these 
forecasting methods was carried out were determined by the 
following data. The accuracy of STF (one step forward) for 
these methods was determined by an exponentially smoothed 
estimate of the current absolute prediction errors for test 
dynamics (4) from observations (5) at discrete moments in 
time. Exponential smoothing of absolute forecast errors was 
carried out with a smoothing parameter equal to 80 counts. 
Simulation of the modified method was performed for ε = 0.3 
and W = 4. The value of MN SD for the test dynamics (4) 
ranged from 0.01 to 0.9. The test dynamics (4) during the 
simulation were determined for the values n = 200 and k = 250. 
At the same time, the initial forecast value for the simulated 
methods was 0.1.

To illustrate the results of the simulation, Fig. 1 shows 
the dynamics of the smoothed absolute error of STF for the 
test model of observations (5) at an MN SD of 0.9. The red 
curve corresponds to the smoothed absolute STF error (E1) 
for the modified method, and the black curve corresponds  
to the smoothed absolute STF error (E2) for the ZOBM 
reported in [44].

As an example, Fig. 2 illustrates similar dependences on 
the dynamics of the smoothed absolute error of the forecast 
at an MN SD of 0.1.
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Fig.	1.	The	dynamics	of	the	smoothed	absolute	error		
of	prediction	based	on	observations	(5)	for	modified	and	

self-adjusting	methods
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Fig.	2.	The	dynamics	of	the	smoothed	absolute	error	of	
prediction	based	on	observations	(5)	for	the	modified	and	

self-adjusting	methods

In Fig. 1, 2, the dashed line illustrates the current test 
dynamics of the process A0i, and the dotted line – the test 
dynamics of the process Ai, taking into consideration the MN, 
based on which the forecasting is carried out.

6. Discussion of results of studying the prediction 
accuracy for the modified method

Our study’s results show that the provided accuracy of 
UD STF, MN of various levels is significantly higher for the 
proposed modified method (less smoothed absolute STF er-
ror) compared to known ZOBM [44]. Thus, Fig. 1 shows that 
for an MN SD of 0.9, the smoothed absolute error of STF for 
the modified method is not more than 23 %, and for ZOBM –  
no more than 42 %. This means that the provided accuracy of 
STF for the test dynamics by the modified method is about 
twice as high. In the case of noise SD equal to 0.1 (Fig. 2), the 
smoothed absolute error of STF for both methods is appro-
ximately the same and does not exceed 10 %. However, in the 
region preceding the abrupt decrease in dynamics, the mag-
nitude of the smoothed absolute error of STF is reduced to 
1.5 % for the proposed modified method (Fig. 2). This means 
that at a low level of MN, both STF methods provide appro-
ximately the same accuracy. This is explained by the fact that 
in the case of a small level of MN, the weight of correction of 
the current forecast for the methods under consideration is de-
termined mainly by UD HP. However, with an increase in the 
level of MN, ZOBM significantly loses in the accuracy of STF 
to the proposed method, which takes into consideration UD. 
At the same time, with an increase in the level of masking 
noise, it becomes increasingly difficult to assess the dynamics 
based on MN. This is explained by the fact that with an in-
crease in the noise level, there is large masking by RS of the 
predicted dynamics of HP. However, with a significant level 
of MN, it makes no practical sense to predict the UD HP. In 
our opinion, there is no method for forecasting HP with UD, 
masked by significant noise levels, which would have a high 
realizable accuracy of STF under these conditions. It should 
be noted that the proposed modified method of HP STF with 
UD, MN, is parametric. To implement it, one needs to specify 
two parameters (ε and W) to calculate the weight of the cur-
rent correction of the previous forecast. However, the results 
of the study of the accuracy of STF in the case of the test 
dynamics under consideration at different values of MN SD 
showed that the choice of specific values for these parameters 
has little effect on the resulting accuracy of STF UD, MN.  
During the research, it was established that for the consid-
ered test model of dynamics at different values of MN SD, 
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the allowable range of values for the ε parameter is from 
0.2 to 0.5, and for the W parameter – from 1 to 5 samples. 
Possible areas for the further development of this seminal 
study might include the verification of the effectiveness of 
the proposed modified forecasting method and the allowable 
intervals of the values of the parameters ε and W for a wider 
class of HP test dynamics models and MN models other than 
the Gaussian process.

7. Conclusions 

1. Within the framework of the adaptive zero-order 
Brown’s model, a modified method for predicting hazardous  
processes with unknown and non-stationary dynamics masked 
by the noise of various levels, providing increased forecast 
accuracy, was substantiated. The essence of the proposed 
modification of the method is a technique for determining the 
weight of correction of the previous forecast based on the re-
current state for the measured data in real-time observation.  
This makes it possible to correct the previous forecast of un-
known dynamics not only taking into consideration the level 
of masking noise but also taking into consideration informa-
tion about the current unknown dynamics contained in the 
current recurrence of the process states.

2. To study the accuracy of the forecast, a test model of 
the dynamics of the predicted process was determined, as well  

as a model of additive masking noise with a variable level. 
The test dynamics of the predicted process were determined 
in the form of a rectangular pulse with unit amplitude. As an 
additive model of masking noise, a discrete Gaussian process 
with a zero mean and a variable value of the mean square 
deviation was considered. These models were selected as 
test models when investigating the accuracy of the modified 
and known methods for predicting a process with unknown 
dynamics masked by noise with a variable level.

3. The accuracy of the proposed modified and known 
self-adjusting forecasting methods has been studied. It is 
shown that the provided accuracy of forecasting unknown 
dynamics masked by the noise of different levels is signifi-
cantly higher for the modified method compared to the 
known self-adjusting method. It has been established that 
for SD of the masking noise equal to 0.9, the smoothed 
absolute forecast error for the modified method does not 
exceed 23 %, and for the known method, the absolute fore-
cast error does not exceed 42 %. In this case, in the case of  
a masking noise SD of 0.1, the smoothed absolute predic-
tion error for both methods is approximately the same and 
does not exceed 10 %. That means that at a low level of 
masking noise, both prediction methods provide approxi-
mately the same accuracy. However, with an increase in 
the level of masking noise, the prediction accuracy of the 
known method is significantly lower compared to the pro-
posed modified method.
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