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Abstract: The impact of the plant growth regulators (PGRs) Stimpo, Regoplant, and Charkor on the
production of the second-generation energy crop Miscanthus × giganteus on marginal post-military
soil was investigated during two vegetation seasons. The land, previously a tank training polygon,
has not been in use since 1990 and has become marginal. Biological parameters (stem, shoot, and
root lengths) and dry biomass values were evaluated in relation to the applied treatments. The
multivariate general linear model (M-GLM) results showed a positive influence of Charkor on
M. × giganteus development; the effect was markedly higher in the second year of vegetation. The
impact of Stimpo and Regoplant was less noticeable; nevertheless, certain combinations of treatments
showed satisfactory results. The M-GLM approach detected the inter-influence of the main factors of
the production process, i.e., PGRs, soil, and year of growing. The results showed the predominant
influence of year, PGRs and combined factor PGRs × year on the biological parameters; the other
studied factors and their combinations were not as effective. Further research should focus on
verifying the field-scale results for the M. × giganteus plantation established in a post-military area
and compare the lab and field studies.

Keywords: Miscanthus × giganteus; multivariate general linear models; plant growth regulators;
biological parameters

1. Introduction

Plant growth regulators (PGRs) are organic chemical compounds that modify or regu-
late physiological processes in plants when applied in small concentrations and appreciable
measures. These substances include plant hormones (natural or synthetic) and non-nutrient
chemicals that do not naturally occur in plants. PGRs are used to influence plant growth
and development and better realize their genetic potential [1]. The type and working con-
centration of PGRs in the liquids applied depend on the plant species, the tissue or organ
cultured, and the objective. These substances can influence plant physiology to change
morphological (i.e., root biomass and architecture) and metabolic properties [2,3]. The
commonly used PGRs are auxins, cytokinins, and gibberellins; some PGRs have as active
ingredients biologically active substances synthesized by microorganisms, including fungi,
such as micromycetes [3] or species of the genus Cylindrocarpon obtusiusculum Sacc. [4].
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The fungi are frequently isolated from deciduous and coniferous forests as sapro-
phytes and are highly competitive. Fungi species synthesize common PGRs, cytokinins,
gibberellins, and indoleacetic acid [5]. PGRs are one of the active metabolites of fungi;
micromycetes have been produced commercially and used to enhance the production
of corn, barley, and vegetables in Germany, Eurasian countries, and China [6]. It was
illustrated [7–10] that the application of PGRs belonging to this group (Stimpo, Regoplant,
Charkor) in the production of corn and barley improved crop yield, mitigated the adverse
effects of moisture stress and nutrient limitation, and enhanced tolerance to parasites.

Miscanthus × giganteus Greef & Deuter ex Hodkinson & Renvoize is an industrial crop
with a beneficial environmental profile; this perennial grass has a high tolerance to abiotic
stresses, is able to grow on marginal land, and has limited nutrient requirements [11].
The plant is seed-sterile, has a C4 profile, and can be utilized in poor soil for boosting
soil health [12]. The growing demand for alternative energy and lignocellulose biomass
to mitigate climate change has made M. × giganteus a popular crop [13], and commer-
cial production has been initiated in countries with limited access to energy, including
Ukraine [13,14]. The crop can be applied as a phytoagent in land slightly contaminated
by trace elements (TEs) [15] or oil products [16,17]. Its biomass can be converted to liquid
fuels and numerous value-added bio-based products, for example, fibers for fibrous and
isolation materials [18,19] and pulp for paper and packaging materials [20,21]. Crop waste
can be processed into biochar, which may be returned to the soil as an amendment to
improve plant growth [21,22]. However, rather often, the harvest value of M. × giganteus
biomass grown on marginal land is not sufficient for commercial exploitation [23] and
improvements to the production cycle and different agronomic factors, similar to other
crops [24], have been proposed [25,26], including the exploitation of PGRs [27].

The effects of different basal media and their combinations, PGRs, on callus induction
and plant regeneration have been studied [28]. Adding a PGR (benzyladenine, a synthetic
cytokinin) to nutrient media for the microclonal propagation of M. × giganteus produced a
highly embryogenic callus, which determined the completeness of shoots and accelerated
the regeneration of the plant [28]. Supplementing Murashige and Skoog (MS) medium
with 0.5 mg L−1 6-benzyladenine and 0.05 mg L−1 α–naphthalene acetic acid in the in vitro
cultivation of Miscanthus sacchariflorus L. had a positive effect on adventitious shoot prolifer-
ation [29]. A new, effective, and simple regeneration system for Miscanthus sinensis Anders,
M. × giganteus, and M. sacchariflorus was developed, comprising two media supplemented
exclusively with growth regulators (5.0 mg/L of 2,4-D and 0.5 mg L−l of benzyl adenine,
0.5 mg L−1 of KIN and 0.5 mg L−1 of naphthalene acetic acid) and lasting five months [30].

The impact of PGRs on Miscanthus spp. production was mainly investigated when
the plant was cultivated on regular fertile land; however, the reported results are some-
times controversial. Padhye and Groninger [31] found that while two foliar sprays of
benzyl adenine at 500 or 1000 mg L−1, trinexapac-ethyl at 220 mg L−1, or uniconazole
at 20–40 mg L−1 two weeks apart controlled the height of M. sinensis, the benzyladenine
application did not suppress the height of this plant, though it did suppress the height of
the other tested ornamental grasses. At the same time, the application of trinexapac-ethyl
effectively controlled the height of Poaceae grasses, including M. sinensis, but did not
influence the tiller number of any plant studied. Application of PGRs based on humic acid
showed a significant increase in aboveground and underground M. × giganteus biomass
when the crop was cultivated in fertile soil [32]. At the same time, Hellios et al. [33] found
that the use of gibberellic acid and AB aqua rooting agent, or these two substances together,
did not positively affect the rooting of M. × giganteus seedlings. Laboratory studies re-
lated to the effects and interactions between symbiotic fungi, represented by arbuscular
mycorrhizal fungi (AMF), along with the endophyte and cytokinin-like growth regulator
thidiazuron (TDZ), on M. × giganteus production indicated [34] that the fungal inoculants
and TDZ did not influence plant growth. However, they did modulate phytohormone lev-
els in the leaves. The study highlighted the existence of phytohormone homeostasis under
the combined influence of beneficial inoculants and a growth regulator. In greenhouse
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and field experiments, the enhancement of M. × giganteus productivity with beneficial
soil microbes and Ascophyllum nodosum L. seaweed extract was observed on poor-quality,
marginal land [25], which may be associated with increased access to limited soil nutrients
due to PGR application.

The PGRs emistim, Agrostimulin, and Regoplant, which are based on aversectine and
phytohormones produced by Cylindrocarpon obtusiusculum, were tested on M. × giganteus
cultivation in fertile soil [27] and positively impacted the physiological parameters. They
increased the value of the chlorophyll ratio, particularly in the early stages of vegetation
growth, and enhanced morphometric indicators of plant height, the numbers of stems in
the bush, and aboveground biomass yield. In addition, the application of PGRs reduced
the dependence of survival rate on weather conditions, which was particularly evident for
the late planting time.

A limited number of studies analyzed the impact of PGRs on Miscanthus spp. devel-
opment in contaminated or marginal lands, including post-military areas. In one study,
treatment of M. ×. giganteus rhizomes with the humic-based PGRs Gumifild Forte and
Fulbital increased plant survival rates when a crop was cultivated in field conditions in
previously oil-contaminated soil [35]. The application of PGRs stimulated the develop-
ment of the root system, improved aboveground biomass, and increased the content of
photosynthetic pigments in the leaves. Our previous study, in which Regoplant and Stimpo
were tested during one vegetation year of M. × giganteus in soil slightly contaminated
with TEs, indicated the effect of PGR utilization on morphological indicators and biomass
parameters when the crop was produced in soil of moderate quality [36]. The influence
was greatest when PGRs were combined to treat rhizomes before planting and used in
plantation spraying during vegetation [36]. However, the research illustrated that the
application of PGRs were not effective when the crop was cultivated in pure nutrients and
organic matter soil.

Miscanthus spp. is a perennial grass, and the first two production cycles are the most
important for establishing a good stable feedstock [37]. In this regard, PGR influence must
be monitored in at least two growing processes. In the previous study [36], it was concluded
that the development of plants in pure soil was not sensitive to the application of PGRs;
however, the conclusion was based on simple graphical analysis, while the influence of
multi-factor interactions, i.e., soil–PGRs, soil–years of cultivation, PGRs–years of cultivation
was not statistically evaluated. To overcome this gap, the current research was designed to
examine the influence of PGRs on M. × giganteus cultivation during two vegetation seasons
with a statistical evaluation of the primary process factors: soil, time, and PGR type.

Consequently, the goals of the current study were as follows:

− To test the impact of three commonly used PGRs applied in the Miscanthus spp.
production scheme, i.e., Regoplant, Stimpo, and Charkor, on dry biomass value
during two vegetation seasons;

− To analyze the impact and value of three main factors involved in the production
cycle: soil, PGRs, and year of cultivation on plant development.

2. Materials and Methods
2.1. Soil Characteristics

The laboratory study was carried out in 2017–2018 with soil taken from the post-
military site in Dolyna, Ivano-Frankivsk Region, Ukraine. This field was not under exploita-
tion since 1991 and was previously used as a tank training polygon of the former Soviet
Union army; currently, this land can be considered as marginal post-military area [38].
The physicochemical characteristics of the studied soil were presented and discussed in
detail earlier [36]. The field consists of two plots; each plot has a size of 161 m2. The
GPS coordinates are: Plot #1, 48◦58′05.1′ ′ N and 23◦59′41.6′ ′ E; Plot #2, 48◦58′01.4′ ′ N and
23◦59′33.3′ ′ E. The soil sampling was conducted using the standard approach [39] from one
5 m × 5 m testing square. The collected soil was first dried to constant weight and then
passed through a sieve with a pore diameter of 2 mm [40] to remove the plant materials and
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stones, followed by thorough mixing. Soil collected for research from Plot #1 was named
Soil I; soil collected from Plot #2 was named Soil II.

The agrochemical parameters of the research soils determined by standard methods
are presented in Table 1. The physicochemical characteristics of the studied soil were
presented and discussed in detail previously [36].

Table 1. Agrochemical characteristics of Soil I and Soil II.

Parameter Soil I Soil II Standard Method Apparatus

pH 7.1 6.1 DSTU ISO 10390:2001 [41] pH (KCl) [41] pH meter pH-150MИ
Available P, mg kg−1 50 20 DSTU 4115:2002 [42] Chirikov [42] ULAB 102UV
Available K, mg kg−1 58 73 DSTU 4115:2002 [42] Chirikov [42] Flame photometerCL-378 (ELICO)

Available Ca, mmol-equivalent
100 g−1 17.1 15.6 DSTU 7861:2015 [43] CINAO [43] Titration method (chemical beaker, magnetic stirrer,

pipettes)
Available Mg,

mmol-equivalent 100 g−1 1.5 1.9 DSTU 7861:2015 [43] CINAO [43] Titration method (chemical beaker, magnetic stirrer,
pipettes)

Alkaline hydrolyzed N, mg
kg−1 120 130 DSTU 7863:2015 [44] Cornfield [44] Titration method (chemical beaker, magnetic stirrer,

pipettes)
Available S, mg kg−1 0.2 0.1 DSTU 8347:2015 [45] Sokolovsky [45] ULAB 102UV (ULAB)

Organic matter, % 11.2 10.9 DSTU 7632:2014 [46] Tyurin [46] ULAB 102UV (ULAB)

Before setting up the PGR experiment, the particle size distribution of the soils was
determined following [47]. The results are presented in Table 2.

Table 2. Soils Fractions *.

Soil
Hygroscopic
Moisture, %

Soil Fractions (in mm), Content (in %)
Sum of

Particles
Less than

0.01 mm %

Physical Sand Physical Clay (<0.01)

Sand Silt Clay

1.00–0.25 0.25–0.05 0.05–0.01 0.01–0.005 0.005–0.001 <0.001

I 3.52 0.94 4.55 22.24 5.56 22.93 43.78 72.28
II 3.08 2.57 2.94 29.18 6.95 16.68 41.69 65.31

* Standard: DSTU 4730:2007 [47].

2.2. Design of the Pot Experiment and Characteristics of PGRs

The laboratory experiments were performed in greenhouse conditions in pots. First, 1 kg
of sand and 1 kg of expanded clay for drainage were placed in the bottom of each pot, followed
by 10 kg of the collected soil. The planting material was M.×. giganteus J.M. Greef & Deuter ex
Hodkinson & Renvoize (Angiospermae: Poaceae), and the rhizomes of the variety “Rankova
Zorya” were three years old and had an average weight of 20 ± 2 g. The planting materials
were obtained from the nursery of the Institute of Sugar Beets and Bioenergy Crops, Ukraine,
Kyiv. Two rhizomes were planted in each pot to a depth of 10 cm. Then, the experiment
plan in space was performed according to the Latin square [48]; each of the experiments was
repeated in three replications. Three PGRs, Stimpo, Regoplant, and Charkor, were utilized to
treat planting materials before the experiment and during vegetation.

Charkor belongs to toxicity class IV, the lowest under the standard [49]; LD50 related
to mice and rats is 5300 mg kg−1. The active substance is a complex of 2,6-dimethylpiridin-
1-oxide with C12H10O2-naphtylacethic acid. The complex of the substances formed the
active component of emistim C with the natural background phytohormones of aucsine,
citokininon nature, saturated and unsaturated fatty acids, amino acids, carbohydrates,
and biogenic ion microelements. Charkor does not have cumulative properties and is not
accumulated in soil and produced crops. It is a slightly yellow, homogenous, transparent
liquid, easily dissolved in water, acetone, ethyl alcohol, and other organic solvents.

Regoplant is a substance belonging to toxicity class IV [49]; LD50 related to mice
and rats is 5800 mg kg−1. The active substance is a complex of physiologically active
compounds: metabolic products of the micromycetic fungi Cylindrocarpon obtusiusculum,
a modified compound of PGR; emistim C, a complex of biogenic microelements; and
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aversectin C, a metabolic product of actymonycetic fungi Streptomyces avermytilis. This
product does not have cumulative properties and is not accumulated in soil and produced
crops. Regoplant is a homogeneous, light green, transparent liquid that can be indifferently
dissolved in water, acetone, ethyl alcohol, and other organic solvents.

Stimpo is a substance belonging to toxicity class IV [49]; LD50 related to mice and
rats is 5800 mg kg−1. It is formed of a complex of physiologically active compounds:
metabolic products of the micromycetic fungi Cylindrocarpon obtusiusculum, a modified
compound of PGR; emistim C, a complex of biogenic microelements; and aversectin C, a
metabolic product of the actymonycetic fungi Streptomyces avermytilis. The substance does
not have cumulative properties and is not accumulated in soil and produced crops during
application. Stimpo is a homogeneous, colorless, transparent liquid easily dissolved in
water, acetone, ethyl alcohol, and other organic solvents.

All three selected PGRs were produced by the Inter-institutional Scientific and Tech-
nological Centre “Agrobiotech” (Agrobiotech) under the jurisdiction of the National
Academy of Science and Ministry of Education, Ukraine (ISTC NAS&MOE), (https://
www.agrobiotech.com.ua, accessed on 24 December 2021). The substances are produced
on an industrial scale, however, the producer does not provide detailed formulations [50].
Publicly available characteristics of selected PGRs are presented in Table 3.

Table 3. Characteristics of PGRs used for the treatment of M. × giganteus (adapted from [16,36] and
http://www.agrobiotech.com.ua, accessed on 10 November 2021).

PGR Title Stimpo Regoplant Charkor

Standard TU U 20.2-31168762-005:2012
[51]

TU U 20.2-31168762-006:2012
[52]

TU U 24.2-03563790-041-2001
[53]

Content Natural Natural Synthetic

Mode of action

Promotes accelerated cell
division and the development

of a powerful root system,
increases the leaf area and

chlorophyll content, reduces
phytotoxic action of pesticides,
enhances host plant tolerance to

pathogenic organisms

Promotes accelerated cell
division, rhyzogenesis,

development of
symbiotic microflora in the root

system, intensification of
photosynthetic activity and
development of leaf surface,

decrease in phytotoxic action of
pesticides, enhances host plant

tolerance to pathogenic
organisms

Accelerates cell division,
rhizogenesis, development of

symbiotic microflora in the root
system, enhances

photosynthetic activity and
development of the leaf

surface. High-performance
stimulant of root formation.
Increases plant resistance to

abiotic stress

Composition

PGR emistim C: emistim C:
metabolic product of

Cylindrocarpon
obtusiusculum—analogues of

phytohormones of auxin,
cytokinin nature, saturated and
unsaturated fatty acids, amino

acids, carbohydrates

PGR emistim C: emistim C:
metabolic product of

Cylindrocarpon
obtusiusculum—analogues of

phytohormones of auxin,
cytokinin nature, saturated and
unsaturated fatty acids, amino

acids,
carbohydrates

PGR emistim C: emistim C:
metabolic product of

Cylindrocarpon
obtusiusculum—analogues of

phytohormones of auxin,
cytokinin nature, saturated and
unsaturated fatty acids, amino

acids, carbohydrates

Natural complex aversectin C,
a metabolic product of

actinomycetes Streptomyces
avermytilis. Microelements:

boric acid, copper sulphuric
acid (II) 5-water, ammonium,

molybdenum acid, manganese
(II) chloride 4-water,

potassium iodide

Natural complex aversectin C,
a metabolic product of

actinomycetes
Streptomyces avermytilis.

Universal micro fertilizer
“Reakom-ZERNO”:

Composition of biogenic
microelements

2,6-Dimethylpyridine-N-
oxide with a synthetic analogue

of phytohormone with
1-naphthyl-acetic acid.

Empirical formula C19 H19 NO3.
Structural formula:
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substances are plant root initiators/ stimulators. Charkor was successfully utilized when 
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medicinal plants were treated. Hence, Charkor’s standard application method involves 
the soaking of vegetative plant parts in a water solution of this substance before planting; 
spraying biomass during vegetation is not utilized in the case of Charkor. The 
recommended concentration (Table 3) of Charkor in the water solution used to treat 
vegetative parts before planting is between 0.1% and 4%; the recommended exposition 
time is between 2 and 20 h. Following these recommendations, M. × giganteus rhizomes 
were soaked in a Charkor water solution with concentrations of 0.1% and 0.4% and an 
exposure time of 12 h. In the control experiment, rhizomes were soaked in distilled water 
without PGR at the same exposition time. Regoplant and Stimpo do not have chemically 
synthesized analogues of plant hormones and, unlike Charkor, they are not characterized 
with a strong root initiation effect. Based on testing with wheat and barley (which belong 
to the same family, Poaceae, as M. × giganteus), these PGRs are recommended [6,55] for 
utilization in a combined treatment, i.e., treatment of planting material before planting 
followed by spraying of the vegetation: it is recommended to perform the the first spray 
when three to four pairs of leaves have appeared, and the second when six pairs have 
appeared. For Regoplant, the proposed treatment dose is between 1.22–2.44% with an 
exposition of 2–24 h. In the current study, we used a 2.44% water solution of Regoplant to 
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Charkor, Regoplant and Stimpo are widely utilized in Ukraine and surrounding coun-
tries for improving the development and biomass production of different agricultural
plants, including first-generation energy crops: barley, wheat, sugar beet, fruits, and vegeta-
bles [6–8,50]. Recently, Stimpo and Regoplant obtained Organic Standard certification and
can be used in organic agriculture [54]. The type of M. × giganteus treatment with selected
PGRs was chosen based on their function type [6,9,51–53,55]. The composition of Charkor
includes chemically synthesized analogues of phytohormones, i.e., 2,6-Dimethylpyridine-
N-oxide and 1-naphthylacetic acid; these substances are plant root initiators/ stimulators.
Charkor was successfully utilized when green and woody cutting seedlings of fruit and
ornamental trees, shrubs, flowers, and medicinal plants were treated. Hence, Charkor’s
standard application method involves the soaking of vegetative plant parts in a water
solution of this substance before planting; spraying biomass during vegetation is not uti-
lized in the case of Charkor. The recommended concentration (Table 3) of Charkor in the
water solution used to treat vegetative parts before planting is between 0.1% and 4%; the
recommended exposition time is between 2 and 20 h. Following these recommendations,
M. × giganteus rhizomes were soaked in a Charkor water solution with concentrations of
0.1% and 0.4% and an exposure time of 12 h. In the control experiment, rhizomes were
soaked in distilled water without PGR at the same exposition time. Regoplant and Stimpo
do not have chemically synthesized analogues of plant hormones and, unlike Charkor,
they are not characterized with a strong root initiation effect. Based on testing with wheat
and barley (which belong to the same family, Poaceae, as M. × giganteus), these PGRs are
recommended [6,55] for utilization in a combined treatment, i.e., treatment of planting
material before planting followed by spraying of the vegetation: it is recommended to
perform the the first spray when three to four pairs of leaves have appeared, and the
second when six pairs have appeared. For Regoplant, the proposed treatment dose is
between 1.22–2.44% with an exposition of 2–24 h. In the current study, we used a 2.44%
water solution of Regoplant to treat rhizomes before planting and 1.22% and 2. 44% water
solutions for spraying, with an exposure time of 12 h. In the control experiment, rhizomes
were soaked in distilled water without PGR at the same exposition time or sprayed with
distilled water. For Stimpo, the proposed treatment dose for the initial planting material is
between 0.25–0.50% with an exposition of 2–24 h. In the current study, we used a 0.25%
water solution of Stimpo to treat rhizomes before planting and 0.25% and 0.50% water
solutions for spraying with an exposure time of 12 h. In the control experiment, rhizomes
were soaked in distilled water without PGR at the same exposition time or sprayed with
distilled water.

The following abbreviations are used relating to the treatment of M. × giganteus by
PGRs: Ch1: 0.1% concentration of Charkor treatment of rhizomes before planting; Ch2:
0.4% Charkor treatment of rhizomes before planting; R1: 2.44% Regoplant treatment of
rhizomes before planting; R2: 2.44% Regoplant treatment of rhizomes before planting and
1.22% Regoplant spraying; R3: 2.44% Regoplant treatment of rhizomes before planting and
2.44% Regoplant spraying; S1: 0.25% Stimpo treatment of rhizomes before planting and
0.1% Stimpo spraying; S2: 0.25% Stimpo treatment of rhizomes before planting and 0.25%
Stimpo spraying; S3: 0.25% Stimpo treatment of rhizomes before planting and 0.5% Stimpo
spraying; W: control, treatment with water.

The study was started on 11 May 2017 and completed on 10 October 2018. Plants were
watered with tap water two to three times a week during both vegetation seasons. After
harvest on 13 October 2017, the pots containing the roots of the plants were stored in the
dark over winter. On 30 April 2018, the experiment re-started when the first green shoots
appeared, and the pots were returned to the light in the greenhouse.

2.3. Measuring of Biological Parameters and Dry Biomass Value

Biological parameters: stem length, stem number, and shoots were monitored over
vegetation. At the end of each vegetation when the leaves turned yellow the final mea-
surements of stem length, number of stems, number of shoots, and root length were made.
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The cut aboveground biomass was dried on an open surface till the contact weight. Fur-
ther, in order to determine the dry biomass value (DW), a certain amount of biomass was
transferred to the metal box and dried in a thermostat at 100–105 ◦C to the constant weight.
Initially, biomass was dried for eight hours, then, it was weighed and put in the oven again;
the procedure was repeated until the difference between the two weights was less than
0.0001 g.

2.4. Statistical Analysis

The results were evaluated using multivariate general linear models (M-GLMs) using
the Statistics v. 12.0 PL software package from TIBCO Software, Inc. (Palo Alto, CA,
USA) [56]. Two multivariate GLMs were performed, and the following factors were
considered: the Effect (PGR type and control (nine levels)), Soil (Soil I and Soil II), and
Year (two levels). Year × Soil, Year × Effect, Soil × Effect, Year × Soil × Effect (interaction)
were used as categorical predictors to explain M. × giganteus trait variations, i.e., number
of stems, number of shoots, length of roots, and length of stems. The differences between
individual treatments were tested using a planned comparison.

3. Results and Discussion

The lignocellulose biomass, which contains carbohydrate polymers (cellulose and
hemicellulose) and an aromatic polymer (lignin), is identified as a prospective alternative
for biofuel production [19–21]. The conversion of lignocellulose biomass to heat, bio-oil,
syngas, ethanol, methane, and hydrogen is valuable in climate change mitigation [57]. The
biomass of second-generation industrial crops, including Miscanthus spp., can be processed
to produce energy through the thermochemical routes of gasification and pyrolysis [58].
The effectiveness of the processes is determined by the operational conditions of feed
properties, oxidizer, temperature, heating rate, and residence time [21]. Efforts are focused
on utilizing different agricultural factors to ensure the proper development of plants and
deriving an economically valuable amount of biomass [12,59]. These goals can be achieved
with the application of soil amendments, such as sludge [23,26,60], carbon contented
amendments [61], fertilizers [62], and by influencing the initial planting materials with
PGRs [27,32,36] or microbial isolates [63]. The harvest value of Miscanthus spp. biomass
is determined by plant development during vegetation [64] and plant stress [16], which
can be evaluated by measuring the common biological indicators: plant health, number of
stems, number of shoots, and dry biomass at harvest.

According to the analysis (Tables 1 and 2), Soil I is slightly neutral, while Soil II is
acidic. Both soils are weak in phosphorus and rich enough in potassium. Sulfur content is
low in both soils, and both soils have high organic matter values. Based on the standard
evaluation [65], the researched soils included enough nutrients; however, Soil I is less
acceptable for agricultural purposes due to its higher swelling and shrinking characteristics,
which implies a higher content of clay (Table 2) [65,66] and, following Jones et al. [67], led
to worst plant develop in this soil. Based on soil properties (Tables 1 and 2), the differences
in the influence of PGR treatment on the M. × giganteus production cycle may be expected.

The influence of PGR treatments was more pronounced in the second year of vegeta-
tion than in the first year (Figure 1). For the second vegetation year, the differences in impact
on the bioparameters depending on soil type are more prominent with the plants grown in
Soil II compared to those grown in Soil I. This may be due to the slightly better quality of
Soil II in terms of pH value and swelling and shrinking characteristics (Tables 1 and 2). The
impact of the studied factors, i.e.: PGRs, soil type (Soil I and Soil II), and time (year of vege-
tation), on M. × giganteus bioparameters are presented in Tables 4 and S1, Figures S1–S4
(Supplementary Materials). These studied factors explained 66–94% of the variation of the
traits and were statistically significantly influenced to the number of stems (Table 4).
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Table 4. Evaluation of the effect of the research factors, PGRs, soil type, and year of vegetation, on
M. × giganteus bioparameters following M-GLM procedures.

Factor

Number of Stems,
Radj

2 = 0.78,
F = 15.35, p < 0.001

Number of Shoots,
Radj

2 = 0.66,
F = 6.87, p < 0.001

Length of Roots,
Radj

2 = 0.94,
F = 45.46, p < 0.001

Length of Stems, cm,
Radj

2 = 0.71,
F = 8.49, p < 0.001

F-Ratio p-Level F-Ratio p-Level F-Ratio p-Level F-Ratio p-Level

Year 254.22 <0.001 79.61 <0.001 479.91 <0.001 48.50 <0.001
Soil 46.69 <0.001 1.29 0.26 31.05 <0.001 34.82 <0.001
PGR 4.11 <0.001 14.55 <0.001 102.06 <0.001 13.72 <0.001

Year × Soil 48.86 <0.001 0.03 0.87 13.48 <0.001 54.22 <0.001
Year × PGR 3.54 <0.001 2.87 <0.001 29.27 <0.001 2.44 0.02
Soil × PGR 0.44 0.89 0.93 0.49 1.19 0.32 1.62 0.14

Year × Soil × PGR 0.37 0.93 1.57 0.15 0.83 0.58 2.19 0.04

The stronger influence of PGR treatment in the second year of M. × giganteus veg-
etation (Figures S1–S4) may explain the reduction in PGR impact when the plant grew
in the pure quality soil [36] because results were obtained only for one vegetation of
M. × giganteus.
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The treatment with various PGRs impacted M. × giganteus biological parameters
differently. For example, while Ch1, Ch2, and S2 treatments increased the number of
stems (Figure 1a), R2, R3, and Ch2 treatments impacted mainly the number of shoots
(Figure S2a), and R1, R2, R3, and Ch2 treatments were the most essential in case of root
length (Figure S3a).

The biomass is mainly formed by stems when M. × giganteus is harvested [59]. There-
fore, the enhancement of biomass is among the targeted goals when the crop is grown on
different marginal lands, including post-military areas [60]. This goal may be achieved
by applying varied agricultural practices, including treatment by PGRs [36]. The results
(Table 5) showed that the dry biomass value is primarily dependent on the length of stems
(Figure 1) and the variety of PGR applied (Figure 2) (p < 0.001).

Table 5. Evaluation of the effect of the research factors, PGRs, soil type, and year of vegetation, on
dry biomass yield following M-GLM procedures (Radj

2 = 0.74, F = 8.9, p < 0.001).

Effect F-Ratio p-Level

Year 0.01 0.91
Soil 0.35 0.56
PGR 4.26 <0.001

Year × Soil 0.74 0.39
Year × PGR 2.25 0.03
Soil × PGR 1.58 0.15

Year × Soil × PGR 1.34 0.24
Length of stems 18.44 <0.001
Length of roots 0.08 0.77

Number of shoots 0.16 0.69
Number of stems 0.00 0.97
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In this regard, the gradation of factors influenced stem length and the determination
of the extent to which these results depended on PGR treatment is essential for enhancing
M. × giganteus biomass. The results shown in Figure 1 illustrate that in the first year of
vegetation in Soil I the impact of PGRs had the following order: Ch2 > Ch1 > R1 > S2; for
another treatment, the effect was neglected and close to the treatment with water (control).
In the second year of vegetation, the order of PGR impact was changed for Soil I: S2 > Ch2
> R2 ≥ R3; S1 > Ch1, S3; for other treatments, the effect was neglected and close to the
control. These results showed that, while for the first year of vegetation the influence of
Charkor on increased root growth was the main factor related to enhancing biomass values
(Figure 2), for the second year, the treatment of aboveground biomass competed with the
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treatment of rhizomes and resulted in longer stem length under this treatment. For the first
year of vegetation in Soil II, the impact of PGRs had the following order: Ch2, Ch1 > R1, S2;
for other treatments, the effect was neglected and close to the control treatment. In the case
of Soil II, the effect of treatment by Charkor, which influences root system development [9],
was the main factor for the first year of growing, similar to Soil I. For the second year, the
influence of PGRs had the following order: Ch2 ≥ Ch1 > S2, S1; for other treatments, the
influence of PGRs was the same as for the control. These results highlighted that for the
second year the influence of PGRs in the better quality Soil II was altered compared to the
influence in the poorer quality soil of Soil I. For both years, the prevailing impact of Charkor
in the better quality Soil II revealed that this particular PGR could be recommended for
increasing stem length (and biomass value) when the crop is produced in good quality soil.
When the soil quality is worse (Soil I), combined treatment with the other PGRs studied,
Stimpo and Regoplant, gives almost the same effect as Charkor for increasing stem length
(biomass value).

PGR treatment impacts on dry biomass yield showed (Figure 2) that the most potent
influence was observed for Ch2; the order of impact was the following: Ch2 followed by
S2, R2, R2, Ch1; for another treatment, the effect was neglected and almost the same as for
control. This observation is correlated with the impact of PGR treatment on length and
is in line with the results of [9], which showed that Charkor is an effective substance for
enhancing M. × giganteus development due to stimulation of the root system, which is
among the main factors in plant development [64].

The stimulating effects of two factors (Year and PGR) were essential for the second year
of vegetation and noted for almost all PGR treatments besides Ch1, S1, and S3. Comparison
of Ch1 and Ch2 showed that Ch2 had a greater stimulating influence on the effects of the
two factors.

4. Conclusions

The impact of three studied factors, PGRs, soil type, and year of vegetation, were
evaluated for two vegetation seasons during the growth of the second-generation energy
crop M. × giganteus in marginal post-military soils supported by the treatment of rhizomes
with PGRs. The M-GLM statistical approach showed that these factors influenced plant
bioparameters (stems, shoot and root lengths) and dry biomass yield. As a result, increased
plant height and a larger amount of M. × giganteus biomass were ultimately achieved.
However, stimulation of other aspects of individual plant growth can increase competition
between individuals, which may not increase the proportional growth of biomass and its
energy output.

The results of two years of production of M. × giganteus stimulated by various PGR
treatments emphasized that treatment by Charkor in higher concentrations positively influ-
enced biological parameters and dry biomass value, and the effect was much more vigorous
for the second vegetation year. Therefore, this PGR can be recommended for practical
application on M. × giganteus plantations to enhance plant development and biomass pro-
duction. However, other studied PGR treatments were not as effective in terms of biomass
production despite certain combinations of treatments showing satisfactory results.

To the best of our knowledge, the results reported here represent the first systematic
study comparing the influence of the common PGRs Charkor, Regoplant, and Stimpo on
the production of M. × giganteus over two years in lab conditions. The results obtained
permitted the conclusion that when a crop is grown at a field scale on post-military marginal
soil, only Charkor may be utilized; in particular, the effect of its positive influence has to
be evident with years of growing. Two other researched PGRs (Stimpo and Regoplant),
despite earlier reported positive influence on the development of common crops (corn
and barley) [7–10,55], appeared not to be so effective in the case of the development
of M. × giganteus and cannot be recommended for broad utilization in field conditions
when economics is among the main decision-making factors. Future research should focus
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on verifying the field-scale recommendations for M. × giganteus plantations established on
post-military land and on comparing the results of lab and field-scale experiments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12020881/s1. Table S1. Descriptive statistics of morphometric
traits of Miscanthus; Figure S1. The effect of PGRs on number of steams (a) depending of soil’s type
(b). Squares and circles show least square means. Vertical bars denote 0.95 confidence intervals;
Figure S2. The effect of PGRs on shoot number (a) depending of soil’s type (b). Squares and
circles show least square means. Vertical bars denote 0.95 confidence intervals; Figure S3. The
effect of PGRs on root length (a) depending of soil’s type (b). Squares and circles show least square
means. Vertical bars denote 0.95 confidence intervals; Figure S4. The effect of PGRs on stem’s length
(a) depending of soil’s type (b). Squares and circles show least square means. Vertical bars denote
0.95 confidence intervals.
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